
MSK 014 Gracious Host
Programmer’s Manual

North Coast Synthesis Ltd.
Matthew Skala

January 28, 2023

Software documentation for the MSK 014
Copyright © 2022 Matthew Skala

This documentation is free: you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, version 3.

This documentation is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this documentation. If not,
see http://www.gnu.org/licenses/.

2

http://www.gnu.org/licenses/

Contents
Introduction 8

This manual’s organization . 8
A note on standards . 8
Use and contact information . 8

On-chip peripherals 9
Device overview (DS 1) . 9
Microchip’s guidelines for getting started (DS 2) . 9
CPU (DS 3, FRM 2) . 10
Memory organization (DS 4) . 12
Flash program memory (DS 5, FRM 4) . 13
Resets (DS 6, FRM 7) . 13
Interrupt controller (DS 7, FRM 8) . 14
Oscillator configuration (DS 8, FRM 6) . 15
Power-saving modes (DS 9, FRM 39) . 15
GPIO and Peripheral Pin Select (PPS) (DS 10, FRM 12) . 15
General-purpose timers (DS 11, 12; FRM 14) . 16
Input capture (DS 13, FRM 34) . 17
Output compare (DS 14, FRM 35) . 17
Serial Peripheral Interface (SPI) (DS 15, FRM 23) . 18
Inter-Integrated Circuit (I2C) (DS 16, FRM 24) . 18
Universal Asynchronous Receiver Transmitter (UART) (DS 17, FRM 21) 19
Universal Serial Bus (USB) (DS 18, FRM 27) . 19
Parallel Master Port (PMP) (DS 19, FRM 13) . 21
Real-Time Clock and Calendar (RTCC) (DS 20, FRM 29) . 21
Cyclic Redundancy Check generator (CRC32) (DS 21, FRM 41) 21
Analog to digital converters (ADC) (DS 22, FRM 17) . 21
Analog comparators (DS 23, FRM 46) . 22
Comparator voltage reference (DS 24, FRM 20) . 22
Charge Time Measurement Unit (CTMU) (DS 25, FRM 11) . 23
“Special features,” notably in-circuit programming (DS 26; FRM 9, 29, 32, 33) 23
“Development support” (DS 27) . 24
Instruction set (DS 28) . 24
Electrical characteristics (DS 29) . 24
Packaging information (DS 30) . 24

Off-chip hardware 25
CV inputs . 25
Analog outputs . 25
Gate/trigger outputs . 26
LEDs . 26
SRAM . 27
ICD/ICSP header . 28

3

Voltage regulator/bus access . 28

Build environment and tools 29
XC16 Assembler . 29
Building the firmware . 29
MPLAB X IDE . 29
The configuration include file . 30
Special-purpose include files . 31
The listing file . 32

Programming tips, conventions, and tools 33
Case and spelling . 33
Labels and indentation . 33
Calling conventions . 33
Conserving space . 34

Use space-saving instructions . 34
Sharing a tail . 35
Convenience labels . 35
Tail call and FALL THROUGH . 36
Star section subroutines . 37

Common data . 38
Exception handling . 38
Linker-supported tables . 39

LED blinker (ledblink.s) 41
API . 41
How it works . 41

Miscellaneous utilities (utils.s) 43
Exceptions . 43
Linked lists . 43
Pseudo-random number generator . 44

Calibration (calibration.s) 45
The calibration page . 45
API for the calibration data . 46
Cooperative dual threading . 47
Output calibration . 48
Input calibration . 50
Support routines . 51
Comparator ISR . 52
Hardware simulation . 53

Loader and image builder (loader.s, image.s) 54
Firmware update process . 54
Double assembly . 55
Format of the image file . 56
SRAM simulation and common macros . 56
Loader initialization and main loop . 56
B-record: burn a page . 57
C-record: do a CRC check . 58
I-record: check hardware ID . 59

4

J-record: jump to address . 59
S-record: succeed . 60
F-record: fail . 60
Support routines . 61
Image generation overview . 62
The image generator source file (image.s) . 64

Firmware framework (firmware.s) 66
Microcontroller configuration . 66
Last page . 66
Power-on reset . 66
Non-USB behaviour . 66
Basic I/O . 67
A/D conversion and USB short detect . 68
Global include file . 69

Low-level USB driver (usb.s) 70
Data structures . 70

Buffer Descriptor Table (BDT) . 70
Endpoint (EP) . 71
I/O Request Packet (IRP) . 71

Initialization and finalization . 72
Session handler . 72

Sequence of events . 73
Interface to TPL entries . 74
Calling convention for per-device drivers . 75

Foreground transaction processing . 76
TPL support routines . 76
Device driver support routines . 76
General USB APIs . 77
The token store . 78
Packet send and poke . 78
Multiplex ISR . 79

Attach . 80
Detach . 80
Start Of Frame . 80
On The Go 1 ms . 81
Error . 81
Shared transfer-complete code . 81

Maintenance codes . 82

MIDI backend driver (midi.s) 83
Driver initialization . 83
Background processing . 83
The MIDI message and byte streams . 84
Message and byte stream parsing . 86
Channel 1: mono CV/gate with velocity and square wave . 87
Channel 2: duophonic CV/gate . 88
Channels 3 and 4: quantize to MIDI . 89
Channel 5: arpeggiate up and down . 90
Channel 6: arpeggiate in order . 92

5

Channel 7: arpeggiate randomly . 93
Channels 8 and 9: mono CV/gate on one side . 93
Channel 10: drum triggers . 93
Channel 11: drum gates . 94
Channel 12: mono with clock out . 94
PPS mapping . 95
Tempo timing . 96
Interrupt service routines . 98

Test routines (tests.s) 99
Calibration routine, code 5833 . 99
CRC32 test, code 2540 . 99
LED blinker test, code 3183 . 99
MIDI stream test, code 1001 . 99
PRNG test, code 5879 . 100
SPI test, code 9485 . 100
USB eye pattern test . 100

USB boot mouse driver (mouse.s) 101
TPL entry . 101
Data structures . 101
Driver init and mouse input . 101
Mouse report decoding . 101
Mode 0 (smart quantize) . 102
Mode 1 (quantize to C major) . 103
Modes 2 and 3 (semitone and unquantized) . 104
Result output . 104

USB boot keyboard driver (qwerty.s) 105
TPL entry and key tables . 105
Maintenance codes . 106
RAM data . 106
Driver initialization and main loop . 106
Most modifier keys . 107
Regular typing keys . 107
Left and right shift . 107
Keyboard LED update . 108
Press and release: note keys . 108
Press and release: sustain (Caps Lock) . 109
Press and release: channel keys (F1–12 etc.) . 110
Press and release: isomorphic mode (Num Lock) . 110
Press and release: velocity (keypad numerals) . 110
Press and release: tap tempo (keypad Insert) . 110

USB-MIDI interface driver (usbmidi.s) 112
Data structures . 112
Driver initialization and bulk transfer . 112
Packet decoding and garbage checking . 112

USB mass storage and filesystem (usbmass.s) 114
USB mass storage overview . 114
Partition and FAT structure . 115

6

USB device simulation (overview) . 117
TPL entry and RAM data . 118
Driver init . 118
Reading the FAT superblock . 119
Handling the partition table . 120
Handling a directory entry . 121
Following the FAT chain . 121
FAT-level block loading . 122
Drive-level buffer pool . 122
USB communication . 124
USB device simulation (support code) . 124

Glossary 125

7

Introduction
This manual documents the MSK 014 Gracious Host
from a programmer’s perspective. The Gracious Host
is a module for use in a Eurorack modular synthesizer,
with the main function of interfacing USB MIDI con-
troller devices to CV/gate synthesizer patches. It can
be programmed in the field with alternate firmware,
potentially allowing an unlimited range of other func-
tions, and this manual is intended for programmers
interested in creating alternate firmware, modifying
the standard firmware, or studying how it works.

Writing software for the Gracious Host requires
many skills, and a deep understanding of software
and hardware engineering issues that are not taught
in this manual. This is primarily a reference for qual-
ified programmers, not a tutorial. Most users of the
module will not be well served by attempting to mod-
ify the firmware themselves, and would do better to
read the MSK 014 Gracious Host User/Build Man-
ual (UBM) instead of this one. This manual assumes
knowledge of the material included there. You will
also need the manuals, data sheets, and errata pub-
lished by Microchip Corporation for the PIC24F mi-
crocontroller family; the PIC24FJ64GB002 chip in
particular; the other chips on the board; the assem-
bler and linker (both the software tools and the man-
uals for them); and so on.

This manual’s organization
After this introduction, there are a couple of chapters
describing the hardware; then the bulk of the manual
is about the standard firmware, structured as a chap-
ter on tools and building, one on code conventions
and programming tips, then a chapter for each major
source file. The source chapters are arranged by in-
creasing abstraction level from basic services close to
the hardware, through core subsystems like the USB
host driver and MIDI backend, and finally to the per-
device USB drivers, which are basically applications
running on top of the core subsystems. The man-
ual ends with a glossary mostly focused on expanding
the (many) abbreviations used in my and Microchip’s
documentation. Most all-caps abreviations including
TLAs, and many terms used in italics, are defined in

the glossary.
Assembly language instructions are printed in

lowercase bold, like nop. Prefix 0x indicates hex-
adecimal and other numbers are decimal, as in 0xF00
= 3840.

A note on standards
The Gracious Host is intended to work with USB and
MIDI devices but it is not a compliant implemen-
tation of the associated standards. Both USB and
MIDI are managed by industry organizations who at-
tempt to enforce rules on, and collect high member-
ship fees from, companies who use their trademarks
or advertise standards compliance. As such, it would
be inadvisable to use the trademarked logos of those
organizations in connection with the Gracious Host.

Use and contact information
This module design, including the firmware described
in this manual, is released under the GNU GPL, ver-
sion 3, a copy of which is in the source code package in
the file named COPYING. One important consequence
of the license is that if you create new firmware in-
corporating parts of my standard firmware and you
distribute the modified firmware in binary form – for
instance, as a loadable firmware image or loaded into
a Gracious Host module – then you are obliged to
make the source code available to whoever gets the
binary. You are not permitted to limit others’ free-
doms to redistribute the code and make further mod-
ifications of their own.

I sell the Gracious Host and other mod-
ules, both as fully assembled products and do-it-
yourself kits, from my Web storefront at https:
//northcoastsynthesis.com/. Your support of my
business is what makes it possible for me to continue
releasing module designs for free. The latest version
of this document and the associated source files can
be found at that Web site.

Email should be sent to
mskala@northcoastsynthesis.com.

8

https://northcoastsynthesis.com/
https://northcoastsynthesis.com/
mskala@northcoastsynthesis.com

On-chip peripherals
The PIC24FJ64GB002 chip has a large assortment
of built-in peripherals. This chapter summarizes how
all the peripherals are used (if at all) in the Gracious
Host.

Microchip’s documentation is a little weird. They
make many different PIC24F chips, all with dif-
ferent selections of peripherals and different details
of how the peripherals can be configured. There
is the so-called Data Sheet (DS), which is hun-
dreds of pages long, not really a “sheet” at all, for
the PIC24FJ64GB002 chip. Actually, it is for the
PIC24FJ64GB004; the -002 is a sort of poor cousin,
covered by the same data sheet. Then there is also
a Family Reference Manual (FRM) for the entire
PIC24F family. That describes the union of all the
peripherals on all chips in the PIC24F family. It gives
programming details for each peripheral that are not
included in the DS, so you need to read the FRM
to really write code for each peripheral; but you also
need to read the DS for specific per-chip information
like how many of each kind of timer there are and the
addresses of the registers in data memory.

The chip is also old enough that it can be hard
to find the correct versions of some of the documen-
tation on the Net. In particular, be sure not to con-
fuse chapters of the PIC24F FRM with the “dsPIC”
FRM; incautious search engine queries are likely to
return a mixture of the two. The PIC24F FRM does
not appear to be available as a single document, and
Microchip does not make it easy to find. You need
to search for specific chapters by number. The DS is
still readily available on their Web site.

I will go through all the chapters of the DS, de-
scribing the specific considerations relevant to that
part of the hardware in the context of the Gracious
Host. Notes like “(DS 3, FRM 2)” refer to the rele-
vant chapter numbers in the Data Sheet and Family
Reference Manual. Not every item is covered in both
manuals. In addition to these sources it is also im-
portant to be aware of Microchip’s published silicon
errata; I mention those in this summary wherever
they have an impact on the Gracious Host.

Device overview (DS 1)
The first chapter of the DS just gives a high-level
description of the features on the chip, and describes
the pinouts of the different package variations. Note
we are using the 28-pin SPDIP.

Many pins on the microcontroller chip are general-
purpose I/O (GPIO) pins that can be reassigned
to special functions with the Peripheral Pin Select
(PPS) system. Even if left generic in the microcon-
troller configuration, all 28 pins have specific pur-
poses in the Gracious Host hardware. So Table 1
gives a more specific pinout, showing the names used
by Microchip’s documentation as well as the net
names used in my schematic, as well as notes on how
the pins are used. For more details of the wiring, see
the UBM with its schematics and circuit descriptions.

See Table 2 for an overview of how the Gracious
Host firmware configures many of its on-chip periph-
erals and which source files do that. The rectangular
boxes show where the peripherals get their configura-
tion registers initialized – sometimes more than one
place if different software modules reinitialize the pe-
ripherals – even if the peripherals end up being ac-
cessed elsewhere, as noted. The oval ISR notations
show where the hard interrupt vectors point. The
ADC and output compare hardware depends on clock
frequencies that come from Timer 3 and its prescaler,
and the ISR for the comparator interrupts depends
on reading time values from Timers 4 and 5. All the
general-purpose timers are configured to take their
input from the 16.000 MHz instruction clock. Some
other peripherals that are less heavily linked to oth-
ers, like the USB subsystem, are not shown in this
table.

Microchip’s guidelines for getting
started (DS 2)
This chapter discusses minimal electrical require-
ments for getting the chip powered up. The chip’s
main power input is nominally 3.3V, but the mi-
croprocessor core needs a voltage of 2.55V±0.20V
(at the clock speed we are using). It has a built-in
voltage regulator to knock the 3.3V down to the core

9

1
2
3
4
5
6
7
8
9
10
11
12
13
14 15

16
17
18
19
20
21
22
23
24
25
26
27
28MCLR to optional ICD header

AN0, C3INC, DIN1, from input jack 1
GPIO RA1, CS1 enable to DAC
PGED1 to optional ICD header
PGEC1 to optional ICD header
SPI1 SDO to SRAM and DAC
SPI1 SCK to SRAM and DAC

VSS 0.0V
OSCI 4.000 MHz from oscillator

GPIO RA3, CS2 enable to SRAM
SPI1 SDI from SRAM

GPIO RA4, LDAC strobe to DAC
VDD +3.3V

GPIO RB5, connected to test point USB VBUS +5V
GPIO RB7 to LED 1
GPIO RB8, OC2 output, DOUT2 to out jack 2
GPIO RB9 to LED 2
DISVREG, 0.0V to enable core voltage regulator
VCAP heavy bypass for core voltage regulator
USB D+ to bus connector
USB D– to bus connector
VUSB +3.3V power for on-chip USB transciever
AN11, C1INC, DIN2, from input jack 2
GPIO RB14, OC1 output, DOUT1 to out jack 1
AN9, 1/2 of VBUS for detecting shorts
VSS 0.0V
VDD +3.3V

Table 1: Microcontroller pinout.

voltage, and this voltage regulator needs to have a
10µF ceramic (!) capacitor connected to pin 20 by
as short a trace as possible to ensure stability. There
is also a section in the errata document that is not
exactly errata, but scolds readers even more than
what was already in the data sheet regarding the
need for pin 20 to be very heavily decoupled with
ultra-low inductance, and the ways in which high-k
ceramic capacitors may surprise the unwary.

I have built prototypes and programming tools us-
ing a couple of film capacitors totalling 9.4µF on pin
20, with a ZIF DIP socket and stripboard making the
connection length considerably longer than Microchip
recommands, and they seemed to work okay. How-
ever, it is probably better to follow the instructions
as closely as possible and that is part of why I do not
use or recommend a socket for the microcontroller
chip in a production Gracious Host build.

There is further power complexity associated with
the USB subsystem, which needs to be able to handle
5.0V and can be configured to draw it from the bus
in a “device” configuration; but that is not terribly
relevant to us, operating as a host only. The Gra-
cious Host is normally intended to take 5.0V power
from the Eurorack bus (also using ±12V for the off-
chip analog circuitry), pass that through to the USB
connector, and also use an LDO regulator to drop it
down to 3.3V for the digital chips, with the micro-
controller doing its own regulation for core voltage.

CPU (DS 3, FRM 2)
The big thing to know about the CPU in the

PIC24FJ64GB002 is that it has a modified Harvard
architecture, which is fairly common in microcon-
trollers but is different from the von Neumann archi-
tecture (code and data all in one address space) more
popular in general-purpose computers. The modi-
fied Harvard architecture has two separate address
spaces, one for code and one for data. In the PIC24,
registers and words in data memory are 16 bits wide,
as are the addresses used to point into data memory.
Program memory is 24 bits wide; that is three bytes
per word, even though the addresses of succesive pro-
gram memory words are only two address units apart.
(So it seems like program memory addresses are mea-
sured in units of 12 bits; but since you can’t address
within a program memory word anyway, only even
addresses are valid, and this is slightly less wacky
than it sounds.)

Addresses in program memory are in principle 24
bits wide for the PIC24 family. But our chip in partic-
ular only has about 64K of program memory (techni-
cally 22016 words, remembering they are three bytes
each, so 66048 bytes), and 16 bits are enough to ad-
dress all the words of program memory.

That makes programming a little easier because
program memory addresses actually do fit in regis-
ters and it is not necessary to use “long” instructions
that take an extra word to cover the entire theoret-
ical address space. The assembly language has a lot
of weird features to deal with the tension of having
16-bit and 24-bit stuff going on at once, and there are
points where you need to explicitly do something that
is like a type cast to reinterpret numbers between the

10

firmware.s ledblink.s midi.s calibration.s loader.s

T1

T2

T3

T4

T5

ADC

Comp

OC1

OC2

OC3

OC4

OC5

1:256 ÷64K
0.954 Hz

sync T2 1:256 ÷64K
0.954 Hz

1:256 ÷4096
15.259 Hz

LED blink

1:8 ÷412
4.854 kHz

1:8 ÷64K
30.518 Hz

1:8 or 1:1 ÷64K
30.518 Hz
or 244.141 Hz

1:8 or 1:1 ÷64K
30.518 Hz
or 244.141 Hz

32-bit T4/5
1:8 ÷ ∼8000

to ∼ 5× 108

0.01–600 BPM
24 PPQN clock

T3 ÷3
1.618 kHz

DIN1 ⇒
DIN2 ⇒

read T4
read T5

∼65–2093 Hz
⇒ DOUT1

∼65–2093 Hz
or 960µs pulse
⇒ DOUT1

∼65–2093 Hz
⇒ DOUT1
⇒ DOUT2

∼65–2093 Hz
⇒ DOUT2

∼65–2093 Hz
or 960µs pulse
⇒ DOUT2

(∼65–2093 Hz) soft 960µs pulse
⇒ CV1

(∼65–2093 Hz) soft 960µs pulse
⇒ CV2

(∼65–2093 Hz)

ISR

ISR

ISR

ISR

ISR

ISR

ISR

ISR

ISR

to all OC

4.854 kHz

2.000 MHz

Table 2: Peripheral configuration overview.

11

16-bit and 24-bit worlds without generating a fatal
assembler or linker error.

You get sixteen main working registers called W0
through W15, which live at the bottom of the data
memory space. Stuff like arithmetic usually goes
among the working registers; accessing other ad-
dresses in data memory is a little more work. The
register W0 tends to be used as an accumulator; it is
the default destination of some operations, and has
better connectivity for things like byte-wide instruc-
tions. The register W15 is pretty solidly reserved
for use as a stack pointer and the register W14 is
the frame pointer for the lnk/ulnk stack frame in-
structions if you’re using those. The Gracious Host
firmware uses stack frames for exception handling and
temporary buffers. Instructions that involve 32-bit
operands usually require an aligned pair of working
registers. Register pairs are conventionally referred to
with a colon, like W1:W0 for the 32-bit value stored
in the first two registers (little endian, so W1 is the
high 16 bits and W0 is the low 16 bits). There are
a couple of other minor reserved purposes of specific
registers but for the most part the working registers
are all alike.

The CPU can do hardware 16×16→32-bit multi-
plication in a single instruction cycle. There is hard-
ware support for 32÷16→16-bit division with remain-
der, but it’s not as simple as a single instruction: it
takes two instructions and 19 instruction cycles.

The CPU has some hardware debugging support
built in, including stuff like hardware breakpoints on
access to specified memory locations. Presumably,
that is mediated by secret registers activated by the
in-circuit debugging/programming hardware and not
documented or available to ordinary code. There is
also a chunk of special RAM, accessible only through
special instructions, that buffers data about to be
written to flash. Most peripheral devices that pro-
duce or consume data streams (like the UART and
CRC hardware) have dedicated FIFO buffers hidden
behind their input/output registers.

The PIC24 is consistently little endian every-
where, except for a few peripherals that use other byte
or bit orders required by the standards they support.

Memory organization (DS 4)
This describes the memory organization native to the
chip. More details on how the firmware uses memory
are given in other parts of this manual.

The main program memory extends from ad-
dresses 0x000000 to 0x00ABFE. There are a reset

vector and a couple of interrupt vector tables at the
bottom of that. At the high end, there are a couple
of words of special configuration information. The
firmware lives between these two extremes. The rest
of the 24-bit space is basically empty, except for a
couple of special device-ID and configuration values
that can be read out of magic addresses.

The bottom of data memory, from 0x0000 to
0x07FF, is used for memory-mapped peripherals and
that kind of thing. Interestingly, all the basic
CPU registers like the working registers and pro-
gram counter and so on have their own addresses in
this space and can be accessed the same as other
data-memory locations, although sometimes incur-
ring stuff like pipeline stalls that slow things down
a little. Then there is 8K of general-purpose RAM
covering 0x0800 to 0x27FF.

The first 80 bytes of RAM (0x0800 to 0x084F) are
used by in-circuit serial debugging, probably for stuff
like hardware breakpoints. It is wise to leave those
reserved even in production firmware not expected to
be debugged, just in case someone wants to hook up
a debugger.

Note that although I am describing the data mem-
ory using byte addresses, most instructions can only
access data memory at 16-bit aligned addresses. You
need to use special byte-oriented instructions to touch
the odd numbered addresses, and you will get an ad-
dress trap, which leads to resetting the CPU, if you
break alignment on a word-oriented instruction.

CPU features (pre- and post-increment and decre-
ment addressing modes on all working registers) make
it easy to support multiple stacks growing in either
direction, but the standard stack used by subroutine
calls, interrupts, and so on, is assumed to involve the
register W15. Normally, you put your static vari-
ables at the low end of the RAM area (starting at
0x0850) and then the stack lives after them, grow-
ing toward high addresses. The Microchip toolchain
attempts to also support a heap for malloc-style al-
location, but that is only really relevant when using
the C compiler, and is not really appropriate for a
chip with as little RAM as this one has. The Gra-
cious Host firmware includes a feature of sharing a
common data area with local variables from differ-
ent modules overlaid on top of each other, supported
by assembler macros, notwithstanding bugs and infe-
licities in the Microchip toolchain that make such a
thing harder to deal with than it should be.

The USB hardware uses DMA (with a dedicated
DMA controller) to access data within the general-

12

purpose RAM, and it needs one of its data structures
to be aligned to a 512-byte (0x200) boundary. That
complicates the RAM layout a little.

The high half of the data memory space, that
is from 0x8000 to 0xFFFF, is used to support a
feature called program space visibility (PSV), where
you choose a 16K-word segment of program memory
which will appear in data memory space. You only
actually get to see the lower 16 bits of each 24-bit
word. There is a speed penalty for accessing these
addresses. All in all, it’s a relatively inconvenient way
of reading data from program memory, but the Gra-
cious Host firmware does use it at one point for read-
ing its own hardware ID, and as part of the SRAM
simulation stub (which would not normally be assem-
bled into firmware that would run on real hardware).
It has the advantage that it makes program memory
look just like read-only data memory without needing
special instructions.

It is also possible to read from program memory
into working registers using the tblrdl/tblrdh in-
structions, and in practice that is usually more con-
venient than reading it through PSV.

Note the Gracious Host also has 128K of RAM in
a separate chip, not part of the microcontroller, that
can be accessed through SPI.

Flash program memory (DS 5, FRM 4)
The program memory is flash memory and it can be
reflashed by software. This is a fairly dangerous thing
to do and you need to go through a series of purify-
ing incantations described in the data sheet, under
which you write magic values to different registers on
a tight schedule in order to unlock, arm, and eventu-
ally trigger the program-memory write feature.

Most programmers will be better off to use the
existing code for loading new firmware images and
doing calibration, rather than doing their own writes
to program memory.

If making direct use of the self-programming hard-
ware features, you can’t just freely write new values
overwriting old values. After making the sacrifices for
the occasion as explained in the scripture, you have
to erase an entire aligned page of 512 words (1.5K
bytes) at a time, and then it gets the all-ones value
0xFFFFFF in every word, and then you can rewrite
either a single word or an aligned row of 64 words at
one time.

The flash memory cannot be erased and rewrit-
ten an unlimited number of times. It will eventually
wear out. It’s supposed to be good for ten thousand

cycles. Use of the “unlimited breakpoints” feature of
Microchip’s debugger can wear it out fast because this
feature programs and reprograms sections of memory
every time you start and stop the program, and I rec-
ommend avoiding that. Beware: if you even approach
the limit on hardware breakpoints without exceeding
it, MPLAB X IDE will pop up a dialog offering to
enable unlimited software breakpoints without really
making clear the downside of saying “yes.”

The last page of flash program memory (0xA800
to 0xABFE) cannot be safely rewritten under pro-
gram control because it contains the critical configu-
ration words; as soon as you erased it preparatory to
writing new values, you’d brick the microcontroller.
So in the Gracious Host, this page is not used for code
as such but it stores a copyright notice, an ID for the
module hardware, and a useful table of musical note
frequencies (as well as those configuration words).

The PIC24 hardware supports some so-called se-
curity features so you can make it harder for people
in the field to rewrite, or even look at, secret things
in the program memory. Using such features would
not be consistent with the philosophy of this project.

Resets (DS 6, FRM 7)
Chapter 6 of the data sheet goes through the differ-
ent things that can cause the microcontroller to reset,
and how to read the runes after a reset to determine
which of them occurred. Most of this stuff is primar-
ily useful in systems that try to do clever things with
power consumption and partial shutdowns. The Gra-
cious Host basically only has on and off power states,
so the fine details of resets between other states are
not relevant to us.

Plausible sources of resets for the Gracious Host
are:

• power on;
• catastrophic hardware failure (for instance, of

the clock oscillator) caught by the microcon-
troller at a lower level than software can see;

• deliberately executing a reset instruction,
which in particular may happen at the (suc-
cessful or unsuccessful) end of the firmware re-
flash or calibration sequences, from an other-
wise uncaught exception throw, or during re-
covery from a detected trip of the USB poly-
fuse;

• traps on unaligned access or illegal instructions;
• bringing pin 1 low, which would normally only

happen as part of in-circuit hardware debug-
ging; and

13

MOST URGENT
6 comparators
5 USB
4 ADC

all output compares
Timer 5

2 Timer 1, Timer 2
LEAST URGENT

Table 3: Interrupt priorities in the firmware.

• expiry of the (regular, not deep-sleep) watchdog
timer.

Interrupt controller (DS 7, FRM 8)
There are many different interrupt sources that can
be turned on and off individually and given prior-
ity levels from 0 to 7, higher numbers being more
urgent. The CPU status includes an interrupt prior-
ity level, normally representing the level of the inter-
rupt currently in progress (0 during foreground code),
and interrupts at or below the current CPU interrupt
level are blocked, waiting for it to decrease. Interrupt
nesting can be disabled, but with it turned on as is
default, higher-priority interrupts can happen during
the ISRs for lower-priority interrupts. The disi in-
struction will disable all interrupts of levels 0–6, by
in effect forcing the CPU interrupt level to 7, for a
number of instruction cycles specified by a constant
operand. That can be convenient to make sure small
atomic or time-critical operations are not interrupted.

Source locations of most of the ISRs used by the
Gracious Host firmware are given in Table 2; there is
also an ISR for the USB multiplex interrupt (which
covers many different events, but they all share a vec-
tor) in usb.s. Priority levels used by the Gracious
Host firmware are shown in Table 3. Priority 4 is
the default for interrupts not explicitly configured to
other priorities.

There are two complete interrupt vector tables
in low program memory, right after the reset vector.
You can set and clear a bit in the interrupt controller
to switch between the default vector table and the
“alternate” vector table to quickly swap between two
sets of ISRs; this feature is not used in the current
Gracious Host firmware.

Microchip’s linker (with this behaviour partly de-
fined by its script) will automatically detect the ex-
istence of symbols named like __WhateverInterrupt
and __AltWhateverInterrupt and use them to pop-

ulate the vector tables, using default-table entries
to fill in unspecified alternate-table entries, and us-
ing the symbol __DefaultInterrupt to fill in un-
specified default-table entries. If __DefaultInter-
rupt is also undefined, then the linker will create a
two-instruction stub implementation for it that Mi-
crochip’s debugger disassembles as break reset. The
break instruction seems to be undocumented; it and
its opcode of 0xDA0000 are not in the PIC24 Pro-
grammer’s Manual.

ISRs that do not end up resetting the CPU need
to return using the ISR-specific retfie instruction in-
stead of the normal return that would be used in
foreground code. ISRs must explicitly save and re-
store registers they change that might be important
to the foreground code they are interrupting. Note
in particular that it is possible for an interrupt to
happen in the middle of a repeat loop, and if the
ISR and foreground are both considered allowed to
use repeat, then the ISR must save and later restore
the foreground’s value of the RCOUNT register for
the loop to pick up where it left off.

A general property of PIC24 interrupts is that
they always happen whenever they can, if the cor-
responding interrupt request bit is set in the IFSx
register. An interrupt-causing event sets that bit,
but nothing except a reset will automatically clear
it. When the ISR starts, the CPU interrupt priority
level increases to the level that blocks the interrupt
in progress, so interrupts do not interrupt themselves,
but if the ISR just returns without explicitly clearing
the interrupt request bit, then when the retfie in-
struction restores the old priority level, the interrupt
will immediately happen again. ISRs must explic-
itly clear interrupt request bits, or else they will loop
forever.

Some interrupts associated with static external
states – in particular, the USB attach and detach
interrupts – do this same kind of thing on an addi-
tional level, in that they will keep being requested as
long as they are enabled and the external state is in
effect. Microchip’s documentation describes this is-
sue only vaguely, but there is code for it in their USB
driver. Microchip calls such interrupts level triggered.
If you handle a USB attach interrupt, and you clear
the request bit normally but leave the attach inter-
rupt enabled, then the request bit will immediately
set itself again and the ISR will loop. For these kinds
of interrupts, it is important for the ISR to disable the
interrupt by clearing the enable bit, then acknowledge
it like any ordinary interrupt by clearing the request

14

bit. The disable must happen before the acknowledge
because the automatic re-request is virtually instan-
taneous.

Oscillator configuration (DS 8, FRM 6)
The microcontroller has a number of different modes
for its main clock, including a built-in Fast RC os-
cillator (no external connections needed); using an
externally provided clock signal with or without in-
ternal PLL multiplication; or using a built-in driver
to drive an external crystal. It also has a “secondary”
oscillator that can drive stuff like the real-time clock
when the main CPU is shut down. And there is an
elaborate procedure for switching clock speeds on the
fly, for instance as part of a power-saving effort.

Some of these features do not work, per Mi-
crochip’s published errata; some are prohibitively fid-
dly and unreliable (external crystal, in particular – I
don’t want to have to support DIYers likely to have
trouble with that); and use of the USB module im-
poses a bunch of extra requirements on the clock, in
particular a need for 0.25% frequency accuracy, that
cannot be met or cannot easily be met by some of the
clock options.

The Gracious Host uses what Microchip calls EC-
PLL mode. An external oscillator module that is ac-
curately 4.000 MHz drives the microcontroller’s PLL,
which multiplies it up to 96.000 MHz. I opted for
4.000 MHz as the lowest practical external clock fre-
quency, to reduce EMI. The 96.000 MHz PLL sig-
nal is then divided down to 48.000 MHz, required by
the USB module, and 32.000 MHz, which is theoreti-
cally the main clock frequency of the core. However,
almost everything in the core is actually controlled
by what the Microchip documentation calls FCY or
FOSC/2, both equal to half of the main clock fre-
quency, hence 16.000 MHz. The basic speed of the
CPU is one instruction per cycle of 16.000 MHz; these
cycles are 62.5 ns each.

The clock mode is set by the configuration words
in firmware.s and it is not recommended to ever use
any other mode on real Gracious Host hardware.
However, the source file does offer a different set-
ting to use the Fast RC oscillator when testing this
firmware on other hardware, like a generic develop-
ment board that has no external 4.000 MHz oscilla-
tor, or in a software simulator. In that configuration,
USB probably will not work.

Power-saving modes (DS 9, FRM 39)
The microcontroller chip offers a bunch of special fea-

tures intended to reduce its power consumption, es-
pecially in battery-powered applications. Different
parts of the chip can be switched on and off, clocks
can be slowed or stopped, and so on. Most of these
features are not appropriate for the Gracious Host
and some do not actually work, according to Mi-
crochip’s published errata.

The one that is used a lot in the Gracious Host
firmware is idle mode entered by the pwrsav #1 in-
struction. Idle mode causes the CPU to stop execut-
ing instructions until the next interrupt, while leav-
ing the clock and all peripherals running. It reduces
power consumption a little and also makes program
logic simpler. In normal operation, the ADC inter-
rupt at 1.618 kHz means idle mode will never pause
longer than about 618µs. Coming out of idle mode
resets the watchdog timer, so regular use of idle mode
makes it unnecessary to do explicit watchdog resets.

GPIO and Peripheral Pin Select (PPS)
(DS 10, FRM 12)
Some of the microcontroller’s 28 pins are reserved
for power; some are reserved exclusively for specific
functions, most of which are USB-related; but most
of the pins can be configured for multiple functions
with general purpose digital I/O (GPIO) as a default.
All the GPIO pins have a feature called Change No-
tification (CN), which just means that they can be
configured to trigger interrupts; that is not used in
the Gracious Host.

Most digital on-chip peripherals, like serial tran-
scievers and output compare units but with the no-
table exception of the USB system, connect to the
external pins through a switching fabric and configu-
ration mechanism called Peripheral Pin Select (PPS).
There are 15 pins on the package potentially available
for PPS use, referred to in the DS as RP0–RP11 and
RP13–RP15 (more are available on higher-pin-count
packages).

For each RPx pin, you can optionally link it to one
output of an on-chip PPS-enabled peripheral, which
will override any GPIO output function the pin would
otherwise have. Multiple pins can be linked to the
same peripheral output. You can still read the state
of a PPS-mapped output pin with GPIO input, and
you can still tri-state the pin using the GPIO tri-
state control register. Note that many of these pins
also potentially have other functions specific to the
pin that can override both GPIO and PPS.

In the other direction, for each input of an on-
chip PPS-enabled digital peripheral, you can set it

15

name no. type detail
RP0 4 ICSP debugging
RP1 5 ICSP debugging
RP2 6 PPS SPI1 data out
RP3 7 PPS SPI1 clock out
RP4 11 PPS SPI1 data in
RP5 2 analog input jack 1
RP6 3 GPIO chip select for DAC
RP7 16 GPIO LED 1
RP8 17 GPIO/PPS digital output jack 2
RP9 18 GPIO LED 2

RP10 21 USB data bus
RP11 22 USB data bus
RP12 – – doesn’t exist
RP13 24 analog input jack 2
RP14 25 GPIO/PPS digital output jack 1
RP15 26 analog USB voltage monitor

Table 4: Assignments of mappable pins.

to receive the signal from any one of the RPx pins,
or nothing. You can link both a PPS input and a
PPS output to the same pin (so that one peripheral’s
input receives another’s output) or multiple inputs to
the same pin (so that more than one peripheral input
sees the same signal, from the outside world or a PPS
output).

The analog on-chip peripherals also have some
pin-selection capability, with input multiplexers that
allow them to look at different analog-capable pins,
but the analog mapping is not set up as a single
named and centrally-managed feature, and is usually
not as flexible as the digital PPS. Note that although
many microcontrollers have a more or less perma-
nent non-volatile pin mapping configuration feature
involving so-called fuses, the PIC24F PPS feature
is configured at run time by software, and can be
changed quickly on the fly.

The PPS mappings used by the Gracious Host are
shown in Table 4. The firmware sometimes changes
the mappings on the fly depending on what it’s doing.
For instance, RP8 (pin 17) controls digital output
jack 2, and it is configured as GPIO when the MIDI
interface calls for sending gates through that jack,
PPS mapped to OC2 when the MIDI interface is us-
ing output compare to send trigger pulses or tones,
and PPS mapped to OC1 at the end of calibration
when OC1 is being used to send the same tone to
both output jacks. When pins are assigned to ICSP,
USB, or analog functions, those things override the
GPIO and PPS functions.

It’s possible for mayhem to ensue if the PPS map-
pings get messed up. For instance, although this is
also a risk with ordinary GPIO, you could damage
hardware by configuring a pin as output that is also
being driven in the opposite direction by external cir-
cuitry. The registers that change the PPS mapping
are controlled by a locking bit in the OSCCON regis-
ter and the mapping can only be successfully written
when the locking bit is cleared. In order to change
the locking bit you must first write magic values to
the register in a specified sequence. The subroutines
UNLOCK_PPS and LOCK_PPS in firmware.s im-
plement the ritual for changing the locking bit. Nor-
mally one would unlock the mapping, make the de-
sired changes, and then lock it back up again, so that
if something goes wrong it’s unlikely crashing code
could accidentally change the mapping in the future.

A further level of safety is available in the micro-
controller by means of a bit in one of the configura-
tion words at the top of flash program memory (not
rewritable by software, only by ICSP) which if set cre-
ates the added restriction that the PPS mapping reg-
isters can only be unlocked once. After a reset, soft-
ware can unlock the mapping, set the desired map-
ping, then lock it, and then future unlock sequences
will not work until the next reset. This extra protec-
tion feature would not be appropriate for the Gra-
cious Host because the Gracious Host firmware needs
to continue changing the mapping repeatedly in nor-
mal operation (for instance, to support the different
PPS configurations used by different MIDI channels).

Note that pin 14, connected to the test point, is
one of the few pins with GPIO and not PPS capabil-
ity; any serial communication on that pin for debug-
ging or future expansion purposes will have to use bit
bang. Having PPS capability for the test point might
have been nice, but was overridden by the need to
have PPS for other pins that will be useful to more
users.

General-purpose timers (DS 11, 12; FRM
14)
Although many peripherals have built-in timers
for various purposes, the microcontroller also has
five general-purpose timers called Timer 1 through
Timer 5. Each one is a 16-bit count-up counter with
a target “period” value; when the counter reaches
the target it resets to zero and optionally triggers
an interrupt. There are a variety of options for ex-
actly what gets counted, but in the Gracious Host all
the timers are normally configured to count pulses

16

from prescalers driven by the 16.000 MHz instruction
clock. The standard configuration for the general-
purpose timers is shown in Table 2 and discussed
in the documentation of the different functions they
serve.

It is possible to link Timer 2 to Timer 3, or
Timer 4 to Timer 5, so that the pair will function
as a single 32-bit timer instead of two 16-bit timers.
The MIDI driver does this with Timers 4 and 5 to
enable more accurate tempo measurements.

Because the timers may be constantly updating,
there is some trickery needed to read or write the
value of a 32-bit timer pair as an atomic operation
through the 16-bit microcontroller data bus. When
32-bit mode is active, reading or writing the low 16-
bit word of the timer value always triggers a 16-bit
transfer between the high word and a special “hold”
register. So to read the 32-bit value from Timer 4/5,
first read TMR4 for the low word of the 32-bit value.
That will atomically transfer the high word into the
TMR5HLD register. Then read TMR5HLD to get
the high word, valid at the time of the TMR4 read.
Reading TMR5 directly could give incorrect results
because it might have updated between the two read
operations. When going the opposite direction, write
TMR5HLD first with the high word, then TMR4 with
the low word; the write to TMR4 will atomically
transfer the value prepared in TMR5HLD to TMR5
at the same time. Similar considerations apply for
TMR2 and TMR3HLD when Timers 2 and 3 are
configured for 32-bit operation. The code in midi.s
demonstrates the procedure.

There are side connections from the general-
purpose timers to other peripherals. In the Gracious
Host firmware, the compare/reset events of Timer 3
(4.854 kHz frequency) drive the ADC (only Timers 3
and 5 can be selected for this), and the prescaler of
Timer 3 (1:8 ratio from the instruction clock, thus
2.000 MHz) drives the output compare modules.

Input capture (DS 13, FRM 34)
The microcontroller contains five input capture mod-
ules, which record time stamps of edges detected on
GPIO pins, with a number of options for accumulat-
ing the time stamps in buffers, generating interrupts,
and so on. The current version of the firmware does
not use input capture at all.

We implement something similar to input capture
in software using the comparator interrupts for mea-
suring frequencies during calibration, and in princi-
ple we might get better timing if we could use the

input capture modules for this purpose. But that
would entail either using digital GPIO input instead
of the comparators for reading the input jacks (which
makes them less tolerant of badly chosen voltages),
or else running each comparator output to an unused
PPS remappable pin (of which there are none) to al-
low the input capture module to time comparator
events. Some kind of workaround might be possible
by temporarily repurposing PPS pins normally used
for something else, such as the SPI bus output pins.
Those should be harmless to drive to random digital
levels when the enable lines are not asserted; but ex-
ploring that possibility is a project for some future
version of the firmware.

Output compare (DS 14, FRM 35)
The output compare modules are basically the inverse
of input capture: they generate digital signals, which
can be mapped to different pins of the microcon-
troller, at pre-scheduled times determined by timing
counters reaching specific values. There are five such
modules, with a variety of input and output options.

In the Gracious Host firmware, all five output
compare modules (although only four are ever really
used) are configured to take their clock input from
the prescaler of general-purpose Timer 3, which is
configured for 1:8 prescaling of the instruction clock.
Therefore the output compare counters all count at
2.000 MHz. The first two (OC1 and OC2) are, when
in use, PPS mapped to the DOUT1 and DOUT2 pins
to make their outputs appear on the trigger/gate out-
put jacks. They are configured either to a PWM
mode, actually used here as a frequency generator,
to generate musical notes; or else to generate 960µs
pulses for use as triggers.

The next two modules (OC3 and OC4) are, when
used at all, configured to generate 960µs pulses but
not actually mapped to output pins. Instead, there
is a soft connection (mediated by code in midi.s in-
cluding two ISRs) allowing them to send pulses to the
DACs: if the MIDI subsystem wants to send a trigger
pulse to an analog output jack, it configures the out-
put compare module to send a pulse and interrupt at
the end of the pulse, then sends a high-voltage com-
mand to the DAC over SPI. In the ISR that runs at
the end of the pulse, the MIDI subsystem sends a
low-voltage command to the DAC to end the pulse.
This way the analog and digital output jacks get as
near as possible the same accurate timing for their
pulses, with minimal effort by the CPU, even though
the microcontroller is connected to the analog output

17

jacks only through the DAC.
The last page of flash program memory contains

a table starting at 0x00A808 (NOTE_TBL) that
gives period values for configuring the output com-
pare modules to play different MIDI notes in PWM
mode. With 16-bit counters clocked at 2.000 MHz,
the lowest achievable MIDI note pitch is note 23,
B0 at 30.868 Hz, although the table contains dummy
data for notes 0 to 22 to make indexing easier.

There are some significant published errata for the
output compare modules. One says that the feature
of linking pairs of 16-bit output compare modules
to create 32-bit output compare modules basically
does not work, or works only with severe limitations.
The current Gracious Host firmware does not attempt
that.

The FRM, when describing the output compare
“dual compare single pulse mode,” which we use for
generating trigger pulses, says in a comment of the C-
language example code that “It is a good practice to
clear off the control bits initially.” That understates
the situation. In fact, it is not just “good practice,”
but absolutely necessary, to clear the control bits be-
fore requesting a pulse, and this is necessary before
every pulse, not only when initially configuring the
module. The pulse is triggered by the actual change
of the low three bits of OCxCON1 from 0x0 to 0x4,
not just (as one might reasonably interpret the doc-
umentation) by doing a write operation of the value
0x4.

To make matters worse, there is a silicon erratum
saying that the module may generate a requested in-
terrupt a short time before it becomes able to process
the clearing of the control bits, and I have confirmed
this with hardware testing. What can happen is that
at the end of the output pulse it generates an in-
terrupt, the ISR immediately attempts to clear the
control bits, but the bits don’t change because the
module was still thinking, and a subsequent attempt
to request another pulse will fail.

The workaround implemented in midi.s is for each
output compare ISR to execute a short do-nothing
loop to pause 1µs (two prescaler cycles at 1:8, which
should be enough) before and after clearing the mode
bits. When the foreground receives control after the
ISR returns, the module will be ready to correctly
accept a request for a new pulse.

Serial Peripheral Interface (SPI) (DS 15,
FRM 23)
SPI is a serial bus commonly used for microcontrollers

to talk to off-chip peripherals. The microcontroller in
the Gracious Host has two built-in SPI modules, but
because of the limited availability of external pins, the
Gracious Host only uses one of them, shared between
the SRAM and DAC chips. SPI unit 1 is PPS mapped
to pins 6, 7, and 11 of the microcontroller; pins 3, 10,
and 12 are also used in GPIO mode to support SPI
communication as chip selects (so that the SRAM
and DAC will each ignore transactions directed at the
other) and a strobe for synchronizing the DAC value
changes. See the chapter on off-chip peripherals for
description of the SRAM and DAC.

The SPI bus is in principle bidirectional, but in
our application only the SRAM is hooked up to com-
municate in both directions. The DAC is effectively
write-only. The SPI bus master, which in the Gra-
cious Host is always the microcontroller, controls tim-
ing by transmitting a clock signal, and the SPI pe-
ripheral transmits and receives one bit on each clock
pulse – whether those bits contain useful informa-
tion or not. Writes to the SRAM or DAC must be
matched by corresponding reads, else the read buffer
will overflow, and reads from the SRAM must be trig-
gered by writing the same number of bits.

It is a published silicon erratum that when the
microcontroller wakes up from “sleep mode,” the SPI
module sometimes transmits and receives a couple of
bogus bytes or words. That is not relevant to the
Gracious Host, which does not use sleep mode.

Another erratum says that the SPITBF bit, which
reports whether the transmit buffer is full, sometimes
incorrectly indicates space available a little too early
when the prescaler is set to a slower ratio than 1:4.
The Gracious Host uses a prescale ratio of 1:2 (from
the 16 MHz clock, hence 8 Mbps data rate), which
should make this erratum irrelevant, but during test-
ing I nonetheless had problems with what may have
been missed bytes when I was trying to fill the buffer
all the way using SPITBF. Although I don’t know
that that was really a silicon problem (it could in-
stead have been some unknown mistaken logic in my
code), I rewrote the code in question to never use
SPITBF and never fill the buffer completely, and it
now works. Filling the buffer completely does not
seem to be necessary and is probably better avoided.

Inter-Integrated Circuit (I2C) (DS 16, FRM
24)
The I2C bus is another serial bus for communicating
with off-chip peripherals, like SPI but not the same
as SPI. There are no I2C off-chip peripherals in the

18

Gracious Host and this bus probably cannot be used
in any meaningful way.

Universal Asynchronous Receiver
Transmitter (UART) (DS 17, FRM 21)

UART is yet another serial interface, typically run
at relatively low speed and used for communicating
with human users via terminal-like interfaces. Its
basic design can be traced back to early Teletype
communication standards. With a voltage level
translation, it can be connected to RS-232. There
are two UART units on the chip. The standard
firmware does not use them at all, but in principle, a
firmware that wanted to expose a terminal interface
might be able to activate a UART and PPS-map it
to the front-panel jacks.

Microchip has documented an erratum that the
UART modules cannot send two consecutive break
signals. That is unlikely to be a problem.

Universal Serial Bus (USB) (DS 18, FRM
27)
One of the major features of this microcontroller chip
is its USB support. It is designed to support USB
2.0 device or host operation, including switching be-
tween the two roles according to “USB On The Go.”
The hardware supports low speed (1.5 Mbps) and full
speed (12 Mbps); not USB 2.0 high speed (480 Mbps)
nor USB 3.0 SuperSpeed (5.0 Gbps).

The PIC24F USB module uses a dedicated DMA
controller to read and write data in general-purpose
RAM. It expects a data structure called the Buffer
Descriptor Table (BDT) to exist at an address that
is configurable, but must be 512-byte aligned. The
BDT contains pointers to buffers for the actual data
to be transferred, which can be anywhere in RAM (in-
cluding unaligned byte addresses). Semaphore bits in
the BDT record whether the CPU or the USB mod-
ule own each buffer; in a typical transaction, the CPU
sets up the buffer, flips the bit to transfer ownership
to the USB module, writes a register to actually start
the transaction, and then waits for the buffer to re-
turn to CPU-owned status.

The USB module also leans very heavily on the
use of interrupts. It basically has its own interrupt
controller, with many different interrupt sources that
can be turned on and off and are all multiplexed onto
a single PIC24F interrupt request and interrupt vec-
tor. Much of the logic of the USB driver ends up
being written into the ISR for the USB multiplex in-

terrupt; foreground code basically just sets up data
structures and then waits for the ISR to set flags in-
dicating the transfer is complete, in much the same
pattern as the lower-level relationship between the
CPU and USB module. See the notes in the “inter-
rupt controller” section of this chapter regarding level
triggered interrupts.

Microchip provides a C-language USB driver for
the PIC24F, and that driver is the only way they
recommend using this hardware. The hardware is
not really documented in enough detail to allow a
programmer to write a driver for it. Nonetheless,
I’ve done it, and the resulting code is included in the
Gracious Host firmware and discussed elsewhere in
this manual.

Implementing a full USB protocol stack on a mi-
crocontroller this size is a tall order because of the
number of cases that need to be handled. The Gra-
cious Host’s implementation is stripped down to the
bare essentials and may not be as error-tolerant, nor
as broadly compatible with a wide range of devices,
as users might expect from the USB implementation
on a PC. One important limitation is that the Gra-
cious Host’s USB driver, in its current version, does
not support USB hubs at all. Another is that it does
not support isochronous transfers (typically used by
sampled audio interfaces).

The PIC24F USB hardware supports something
called ping-pong buffers, where each endpoint and di-
rection has (potentially, depending on configuration)
two buffers. The CPU is supposed to be able to work
on one buffer while the USB unit is doing DMA on
the other, to maximize throughput. As far as I can
tell, although Microchip’s driver can be configured to
set the register bit that enables this hardware fea-
ture, it cannot really take advantage of it – even in
ping-pong mode the Microchip driver waits for each
transfer to fully complete before setting up the next.
My own driver does not (in the current version) even
attempt to enable ping-pong mode. In the intended
application, there is no need for maximized through-
put.

One thing that can go wrong on a USB interface is
that someone can short out the power connection – or
just plug in a device that tries to charge a battery, at
high current, without first following the protocol to
request extra power from the host. To guard against
such situations, the Gracious Host hardware (as is
required by the USB specification, though I do not
accept an obligation to follow the specification on ev-
ery point) includes a polyfuse on the USB power line

19

that should trip and cut off the current if the external
USB device draws too much. See the description of
the ADC, below, regarding the firmware’s handling
of a polyfuse trip.

Communicating with low-speed USB devices,
such as (typing) keyboards and mice, requires send-
ing signals called keep-alives at 1 ms intervals. The
DS and FRM do not mention keep-alives, and even
the USB 2.0 standard barely mentions them. I have
determined by experiment, with a lot of oscilloscope
measurements, that when the PIC24F USB module
is in low-speed mode, the register bits that tell it to
send SOFs (required every millisecond in full-speed
mode) will actually make it send keep-alives instead.
That is probably the most convenient way for it to
work. One small gotcha is that it is capable of send-
ing keep-alives into an empty bus after the device has
disconnected. The firmware has to turn keep-alives
(or SOFs) off in this state.

Detection of the speed of a connected USB device
(low-speed or full-speed) is quite finicky and may give
incorrect answers if done at the wrong point in the
attach/enumeration sequence, possibly because speed
detection depends on recognizing the idle state of the
bus, which is opposite for the two speeds. Once there
is data being sent on the bus the CPU can no longer
depend on its being idle at any given moment. Simi-
larly, and probably for the same reason, reading the
bus to detect whether the device is attached or not
seems to be very unreliable; devices often temporar-
ily seem unattached based on bus state, and a driver
that is too eager to detect a detach will often do so
spuriously. The only reliable way to detect device
attach and detach seems to be the attach and de-
tach interrupts, but those are only reliable when very
carefully handled because of their level triggered na-
ture, as well as some corner cases that can arise when
a driver tries to maintain a soft attach/detach state
(as is necessary, because the driver can’t just read the
bus, because reading the bus doesn’t work).

The USB module can potentially generate two
different timer tick interrupts at 1 ms intervals: the
“USB On The Go 1 ms interrupt” and the “Start Of
Frame (SOF) interrupt.” These two interrupts are
not synchronized, are not both accurately at 1 ms in-
tervals, and tend to drift back and forth relative to
each other. I think the SOF interrupt is more accu-
rate for timing, but it only happens when a device
is attached and SOFs or keep-alives are turned on,
whereas the USB OTG 1 ms interrupt can be enabled
any time the USB module is powered up.

The Gracious Host USB driver would like to have
1 ms interrupts for timing delays, even during device
attach when SOFs are not available. In an earlier
stage of development I just used the OTG 1 ms in-
terrupt all the time because it was available in all at-
tach/detach states, but I later found that I needed to
handle the SOF interrupt also for doing other things,
and I had bugs that were triggered when the two in-
terrupts drifted into a certain phase relationship. As
a temporary workaround I implemented a more com-
plicated scheme that would switch between using the
SOF interrupt for timing when it was available, and
the OTG 1 ms interrupt for timing otherwise. I even-
tually fixed the interrupt-phase bugs, so having both
interrupts turned on at once was no longer a prob-
lem, but I kept the interrupt-switching logic because
of the better timing accuracy of the SOF interrupt,
and to reduce the number of calls to the ISR. Be-
cause of the important role of waiting in CPU idle
mode for USB interrupts, very much of the timing of
events throughout the Gracious Host firmware ends
up being on 1 ms boundaries driven by the SOF in-
terrupt.

It is a published erratum that the USB module in
host mode cannot communicate with a low-speed de-
vice through a hub, and the only workaround offered
is to connect the low-speed device directly to the mi-
crocontroller without a hub. The current Gracious
Host firmware does not allow the use of hubs any-
way, as a matter of the feature being unimplemented
in the driver; but this issue represents a pretty sig-
nificant limitation on what might be implemented in
the future. Even with a driver that could support
hubs, we couldn’t connect anything else with one low-
speed device connected, so readily imaginable scenar-
ios like “keyboard and mouse” are out of reach. Mul-
tiple USB MIDI devices attached to a hub might still
be a possibility, because they are normally full-speed
rather than low-speed devices.

Another published erratum says that because
of incorrect CRC5 calculation, external transceivers
cannot be used – and again, there is no workaround
except “don’t do that.” (The Gracious Host doesn’t,
anyway.) There are a couple of other USB errata re-
lated to device mode and details of detecting certain
states of the interface, but they don’t look relevant to
the Gracious Host or like they would limit achievable
functionality.

Although this point is not mentioned in the er-
rata, I have observed the PIC24F USB module to
sometimes overrun its buffers. When it should be

20

reading a packet of a given size from the bus, it may
DMA-write correct data of the specified length to
RAM, and report that the correct amount was trans-
ferred, but actually also write some garbage after the
correct data. Although I was not able to fully char-
acterize the circumstances that cause the problem, it
seemed like it might be related to low-speed transfers,
unaligned buffer starts, or unaligned buffer ends. The
largest overrun I saw was three bytes. Trashing mem-
ory after the end of the buffer is especially damaging
when the buffer is allocated in a stack frame, because
the next thing after the buffer is likely to be an im-
portant return address. The Gracious Host firmware
works around this issue by allocating a little extra
space for each buffer, either seven or eight bytes as
needed to ensure alignment. That can accommodate
more than twice the maximum observed overrun, and
in testing it seems to be enough.

Parallel Master Port (PMP) (DS 19, FRM
13)
The Parallel Master Port seems to be meant to expose
an address and data bus to the outside world for ac-
cessing old-fashioned memory-mapped microproces-
sor peripherals. This module cannot be used on the
Gracious Host. Some of its pins don’t even exist on
the 28-pin version of the microcontroller package, and
others are permanently wired to other functions on
the circuit board.

Real-Time Clock and Calendar (RTCC)
(DS 20, FRM 29)
The RTCC is meant to handle human-style time-
keeping (days, hours, etc.), especially with the abil-
ity to keep running while the microcontroller is in
low-power modes. Since we don’t use the low-power
modes, have no provision for keeping the microcon-
troller powered up even a little bit when the Gracious
Host is not fully powered up, and we cannot spare
pins for the external low-frequency crystal that the
RTCC normally prefers to use, the RTCC module
certainly can’t work at its best and may not be us-
able at all. The standard firmware does not attempt
to use it.

Cyclic Redundancy Check generator
(CRC32) (DS 21, FRM 41)
The CRC32 module is meant to generate and check
almost all forms of cyclic redundancy checks of up
to 32 bits, more efficiently than would be possible in
plain software. Actually using this module is tricky;

not everything said about it in Microchip’s documen-
tation appears to be true, and even if true the doc-
umentation is incomplete; and the consensus among
PIC24 programmers seems to be that it’s not worth
the effort and you’re better off just writing a software
implementation and accepting the lower performance.

Nonetheless, I got the hardware CRC working and
the Gracious Host firmware uses it for checking in-
tegrity of firmware images and as part of the random
number generator. Both these use a configuation in-
tended to match the CCITT CRC32 algorithm as
used by Ethernet, Gzip, ZModem, and many other
systems. It is probably best not to touch the CRC
hardware directly, but access it through the APIs pro-
vided by loader.s and utils.s and documented else-
where in this manual.

The CRC32 module is separate from the dedi-
cated CRC hardware that is built into the USB mod-
ule and not directly visible to the CPU.

Analog to digital converters (ADC) (DS
22, FRM 17)
The microcontroller contains a single 10-bit ADC
with a complicated multiplexer arrangement that al-
lows it to automatically scan through a list of inputs
on a defined schedule, accumulate measurements into
a buffer, and then interrupt the CPU when it has
filled the buffer. In the Gracious Host, this is more
or less permanently configured to cycle through read-
ing voltages on pin 2 (AN0, DIN1, scaled and inverted
voltage from input jack 1), pin 26 (AN9, scaled volt-
age from the USB power connection downstream of
the polyfuse), and pin 24 (AN11, DIN2, scaled and
inverted voltage from input jack 2).

Timer 3 generates a 4.854 kHz frequency to drive
the sampling; each of the three inputs is sampled
at one third of that rate, hence 1.618 kHz, and
interrupts are generated at 1.618 kHz to be han-
dled by an ISR in firmware.s. The ISR updates
the global variables INPUT_ADC1, INPUT_ADC2,
and USB_VBUS_ADC with the values from the
hardware. This update frequency was chosen to
be in a Golden Ratio relationship to the 1.000 kHz
USB start of frame interrupt, reducing the possibil-
ity for creating a rational beat-frequency interaction
between the two.

For INPUT_ADC1 and INPUT_ADC2, the scal-
ing is nominally 206 corresponding to 5.0V on the in-
put jack and 989 corresponding to 0.0V on the input
jack (note the inversion). But the raw ADC values
are affected by component value tolerance and ADC

21

nonlinearity, and the ADC1_TO_NOTENUM and
ADC2_TO_NOTENUM subroutines in calibration.s
can apply calibration data to these numbers to get
more accurate measurements. The external circuitry
should protect the microcontroller from damage for
any voltage within ±12V at the input jacks, but it
is only intended to guarantee useful ADC measure-
ments over 0.0V to 5.0V.

For USB_VBUS_ADC, the scaling is 0 corre-
sponding to 0.0V on the microcontroller pin and bus,
up to 1023 corresponding to 3.3V on the microcon-
troller pin, 6.6V on the bus. The theoretically ideal
reading is 775 corresponding to a bus voltage of 5.0V.
The ISR will detect a short if the reading is less than
or equal to 558 (corresponding to a bus voltage of
3.6V and normally indicating that the polyfuse has
tripped) for at least 100ms; in that case it stops ev-
erything, waits until the bus voltage stays at or above
4.0V (raw ADC reading 620) for at least 1000ms, and
then resets the microcontroller.

In a real-life bus power short situation, the extra
load on the power supply may screw things up badly
enough (in particular, by driving the upstream 5.0V
regulator into protective shutdown) that the micro-
controller is not able to complete this recovery se-
quence under program control; but it will eventually
reset anyway according to the normal power-up se-
quence after the power voltages get back under con-
trol. If the 5.0V supply ends up permanently dam-
aged, too bad, but the polyfuse will probably protect
the 5.0V supply and the 3.3V regulator will probably
protect the microcontroller.

It is probably better to just read the variables
written by the existing ISR, rather than attempting
to access the ADC hardware directly.

Analog comparators (DS 23, FRM 46)
The microcontroller includes three analog compara-
tors which continuously check outside pins against
reference voltages. These operate in parallel with
the ADC inputs. For taking basically digital inputs
(gates and triggers) from the input jacks, it is prefer-
able to use the comparators rather than the ADC
measurements because the comparators are faster
and can generate interrupts; and it is preferable to
use the comparators rather than treating the pins as
GPIO pins to be read digitally, because the compara-
tors provide better-defined threshold behaviour.

Microcontroller pin 2 (AN0, DIN1) is driven by
input jack 1 and connected to comparator unit 3. Mi-
crocontroller pin 24 (AN11, DIN2) is driven by input

jack 2 and connected to comparator unit 1. Compara-
tor unit 2 is not useful in the Gracious Host; it could
only be assigned to pins that are permanently wired
for ICSP and SPI purposes. Note that the buffers
from the input jacks to the microcontroller pins are
inverting, but the comparators are also configured
with inverted input assignments, so the comparator
outputs end up in positive sense relative to the input
jacks.

Current values of the comparator outputs are
available in bit COUT of the CM3CON and
CM1CON registers for DIN1 and DIN2 respectively.
The comparators are set up in inverting mode, undo-
ing the inversion of the input buffers, so these bits are
set for high input at the jacks and clear for low input
at the jacks. The comparator references (see below)
are configured for a threshold voltage equivalent to
1.62V nominal at the input jacks.

The ISR for the comparators is in calibration.s.
It runs on falling edges at the microcontroller pins,
rising edges at the input jacks. It records timestamps
from Timers 4 and 5 to provide something like input
capture implemented in software for frequency mea-
surement during calibration, and it sets soft interrupt
flags used by some MIDI modes.

Microchip has published a silicon erratum saying
that when the internal bandgap reference (see be-
low) is enabled for the comparator reference module,
the comparator may not generate interrupts properly.
They suggest a distressingly expensive workaround of
routing the comparator output to an external pin and
then using the general interrupt-on-pin capability to
detect when it changes. That problem is not directly
relevant to our configuration, because we don’t need
to use the bandgap reference; but we have had a dif-
ferent problem that may be related, of the compara-
tor generating interrupts on both edges of an input
pulse when only interrupts on the falling edge (at the
pin; rising at the input jack) were requested. The ISR
in calibration.s works around spurious interrupts by
checking the comparator output on every interrupt
to confirm it was really a falling edge.

Comparator voltage reference (DS 24,
FRM 20)
There are multiple options for generating voltage ref-
erences for the comparators, including using external
pins, a built-in bandgap reference, or the microcon-
troller’s power supply, as well as scaled versions of
these. As discussed above, an erratum causes the
built-in bandgap reference to conflict with interrupt

22

generation. The Gracious Host firmware configures
this module to use a scaled version of the power sup-
ply, equivalent to 1.62V nominal as seen at the input
jacks, and it would rarely be a good idea to change
this configuration.

Charge Time Measurement Unit (CTMU)
(DS 25, FRM 11)
I don’t know much about the Charge Time Measure-
ment Unit, but it seems to be a kind of specialized
ADC that measures capacitance by feeding a known
current into an unknown-sized capacitor and mea-
suring how long it takes for the voltage to change a
known amount. This is meant to be used for imple-
menting touch sensors. It is unlikely to be usable in
the Gracious Host because the pins it can work with
are all needed by other things.

“Special features,” notably in-circuit pro-
gramming (DS 26; FRM 9, 29, 32, 33)
This chapter of the Data Sheet describes configura-
tion and programming features of the chip, as well
as re-iterating some of the information about the on-
board voltage regulator that cuts the 3.3V power sup-
ply down to the core’s internal voltage. The chip has
some features, described in DS 26, for “protecting”
firmware code from being read by reverse engineers.
Such an effort is not consistent with the goals of this
project.

Low-level configurable hardware features, such as
the clock source, are set by “configuration bits” at
the very top of the programmable area of flash mem-
ory. These are often called configuration “fuses” on
microcontrollers in general because of their historical
implementation using fusible-link PROM (one time
programmable) but on the PIC24 in particular, they
are actually just bits in reprogrammable flash mem-
ory, copied into volatile registers at power-up.

The configuration bits for the Gracious Host
firmware are set in firmware.s, and the recommended
configuration for a standard production module is as
follows. The config.inc file offers a few options that
can change these for debugging or development pur-
poses.

Configuration word 1:
• JTAG disabled (JTAG conflicts with external

hardware connnections)
• code “protection” disabled
• writes to program memory allowed
• reset into operational mode (this may be im-

plicitly changed by the Microchip in-circuit de-

bugging tools when used in debug mode)
• in-circuit debugging uses PGEx1 pins (these

are the ones connected for this pupose on
the board, and a published erratum says the
PGEx3 pins conflict with the operation of the
ADC)

• watchdog timer (WDT) enabled
• WDT prescaler 1:128, postscaler 1:256, which

gives 1.024 s nominal watchdog timeout
Configuration word 2:
• “two-speed startup” disabled (published erra-

tum says it does not work)
• PLL prescaler 1:1 (for 4.000 MHz external clock

input)
• PLL starts automatically
• use PLL for clock
• clock switching disabled
• don’t use external clock output
• allow repeated reconfiguration of PPS mapping
• default pins for I2C (not used anyway)
• use external clock input
Configuration word 3: disable all “segment pro-

tection” and the external-pin functions of the sec-
ondary oscillator. Configuration word 4: disable the
deep sleep watchdog timer (which is different from the
regular WDT) and leave the unused RTCC module
on its default configuration.

The watchdog timer (WDT) is reset under var-
ious circumstances, notably every time the micro-
controller comes out of idle mode (which is about
2.6 kHz in normal operation of the firmware). If it
ever reaches its timeout of about one second, it re-
sets the microcontroller. The idea is that if something
like a power glitch manages to throw the microcon-
troller into an infinite loop, the WDT will allow it
to recover. It might help mitigate some possible pro-
gramming mistakes too, though WDT-resetting side
effects are so common in the code that the class of
bugs that could be mitigated this way, is rather nar-
row.

In-circuit serial programming and debugging are
discussed in the chapter of this manual on program-
ming tools. The basic idea is that some pins of the
microcontroller reserved for this purpose are run out
to pads along the edge of the circuit board, where it is
possible to solder in a 1×6 header connector and at-
tach a programming device like a Microchip PICkit.
Then remote debugging software can control the mi-
crocontroller through that interface, allowing repro-
gramming the chip, single-stepping through the code,
and so on. This method of programming may be use-

23

ful on a Gracious Host that has been built with an
unprogrammed microcontroller chip, or one that has
been “bricked” by loading bad firmware that cannot
be updated through the USB port.

“Development support” (DS 27)
Just an ad for Microchip’s development tools.

Instruction set (DS 28)
Summarizes the PIC24 instruction set. See the PIC24
Programmer’s Manual for much more detail.

Electrical characteristics (DS 29)
This is the part of the Data Sheet most like a tra-
ditional data sheet, discussing voltages and timings.
Take note of the absolute maximum ratings. Some
effort has been made in the Gracious Host hardware
design to buffer the microcontroller chip away from
the outside world in both the input and output di-
rections, but if you modify the design, you will need
to pay attention to these ratings. Standard Euro-
rack voltages and loads may be far outside what the
microcontroller can handle directly.

Packaging information (DS 30)
Detailed drawings in this section show the dimensions
of the different IC packages, recommended footprints
for surface-mount, the layout of the etched markings
on the packages, and so on.

24

Off-chip hardware
Here are some notes on the hardware features of the
Gracious Host hardware beyond the peripherals built
into the microcontroller chip. More detail on the im-
plementation of these is in the circuit explanation
chapter of the UBM; here, the focus is on the pro-
grammer’s view.

CV inputs
The Gracious Host has two external inputs, J1 and
J2 on the schematic, intended for Eurorack CV. Al-
though in some modes of the firmware these are used
for digital (gate or trigger) signals, we normally han-
dle them as analog voltages with an intended useful
range of 0–5V and input impedance of 100kΩ. It
should be safe (in the sense of not causing damage to
the module) to give them any voltage in ±12V.

The voltage from the jack goes through an invert-
ing op amp and resistor network that scale 0V at
the jack to about 3.19V at the microcontroller pin
and 5V at the jack to about 0.665V at the microcon-
troller pin. These voltages translate to nominal ADC
readings of 989 and 206 respectively, and the default
calibration data for the ADC interpolates between
those values.

This input scaling may seem not to make best
use of the microcontroller ADC’s voltage range of
0.0V to 3.3V, but the design is constrained to guaran-
tee that in all cases of component and power supply
tolerances, an input range of 0V to 5V will trans-
late to something within the ADC’s useful measure-
ment range, and the op amp will be unable to drive
the microcontroller pin outside its absolute maximum
bounds of −0.3V to +3.6V. Wide tolerances on the
op amp’s output voltage capabilities necessitate a sig-
nificant safety margin at both ends.

As discussed in the previous chapter, the
ADC ISR in firmware.s writes the raw ADC
readings into global variables INPUT_ADC1
and INPUT_ADC2 at 1.618 kHz update
rate, and the ADC1_TO_NOTENUM and
ADC2_TO_NOTENUM subroutines in cali-
bration.s can convert these (using the current
calibration) to a scale from 0x2400 corresponding

to 0V to 0x6000 corresponding to 5V. To read the
state of an input as a digital bit, read bit number
COUT from the CM3CON register (for input 1) or
CM1CON register (for input 2). These bits will be
set for high input (higher than about 1.62V) and
clear for low input.

Analog outputs
The upper of the two sets of output jacks, J3 and J4
on the schematic, is intended for control voltages in
the range 0V to 5V (upper end of the range actually
a little higher, but not calibrated). These jacks are
driven by a Microchip MCP4822 12-bit DAC chip,
through non-inverting op amps with a nominal gain of
2.8. The DAC chip has an internal reference voltage
of 2.048V±2%, so the maximum output voltage at
the jacks is nominally 5.73V. The minimum is zero,
subject to whatever offset exists in the op amp.

Note that the two units in the DAC chip are re-
versed relative to the jacks: the DAC’s VA is out-
put 2, on the right, and the DAC’s VB is output 1,
on the left.

This chip is controlled through the SPI bus (SPI1
on-chip peripheral, described in the previous chap-
ter). To send a transaction, the steps are:

• Assert RA1 (microcontroller pin 3) low to tell
the DAC to listen to the SPI bus (necessary
because this bus is shared between it and the
SRAM), possibly with the instruction bclr
LATA, #1.

• Send a 16-bit command word to the DAC
through the SPI peripheral. Bit 15 is 1 for
DAC B (output channel 1), 0 for DAC A (out-
put channel 2); bit 14 is don’t care; bit 13 se-
lects the gain mode, with 1 being recommended
for 1× gain; and then the remaining bits are the
DAC value, 0x000 to 0xFFF.

• Retract RA1, as with bset LATA, #1.
• If you’re changing the output voltage, that

doesn’t happen just by sending the SPI trans-
action; you need to also strobe the DAC chip’s
LDAC input (microcontroller RA4, pin 12) low
for at least 100 ns (thus, at least two instruc-

25

tion cycles) and then both outputs will update
at once. Sample code looks like this:

bclr LATA, #4
nop
bset LATA, #4

Sending data through the SPI peripheral is a little
finicky. Although I think the hardware is supposed
to support 16-bit write as a single operation, I have
only gotten good results sending one byte at a time
(big endian) to the SPI1BUF register with the mov.b
WREG, SP1BUF instruction specifically. Referring
to WREG by the name W0 makes the assembler pro-
duce a different opcode and I’m not sure they both
work, even though they should have identical effects.
I’ve also encountered similar issues with the CRC32
peripheral and it’s possible some of these cautions are
more relevant there than with SPI.

Then it’s necessary to read back dummy bytes
and wait for the SRXMPT bit in SPI1STAT
to detect the end of the transaction. In-
stead of talking directly to the hardware it
is probably better for higher-level code to call
WRITE_DAC1 and WRITE_DAC2 for writing raw
12-bit DAC values, or NOTENUM_TO_DAC1 and
NOTENUM_TO_DAC2 for applying calibration
data and writing note numbers on the usual 0x2400
to 0x6000 scale. All those subroutines are in calibra-
tion.s, and they do the necessary handshaking to talk
to the chip properly.

The stability capacitors in the output amplifiers
cut off their frequency response at about 250 kHz.
With the SPI bus running at 8 Mbps, 16 bits per
transaction, some overhead, and the Nyquist limit
shaving off another factor of two, the CPU is un-
likely to be able to drive the outputs to frequencies
higher than about 100 kHz anyway, but that should
be plenty fast enough.

It might be possible to get a few extra volts of
output range by using the 2× gain mode of the DAC
chip (bit 13 of the command word equal to 0 instead
of 1). In that case the DAC’s output code range
becomes 4.096V, but because its power supply is only
3.3V, codes corresponding to higher DAC voltages
than 3.3V will be unusable. With the 2.8 voltage gain
in the op amp circuit, it might be possible to program
the module hardware to generate control voltages up
to about 9V this way, but with lower resolution than
in the standard 5V range. I have not tested, and
do not particularly recommend, the use of 2× gain
mode.

Gate/trigger outputs
The lower of the two sets of output jacks, J5 and
J6 on the schematic, is intended for digital CV out-
puts (gates and triggers). These are connected to
the microcontroller’s pins 25 (RB14) and 17 (RB8)
through non-inverting op amp circuits with gain of
2.8. As a result, the 0V and 3.3V logic levels trans-
late to 0V and 9.2V nominal voltages at the output
jacks, which ought to be plenty for triggering Euro-
rack modules while still also being low enough not to
damage or confuse reasonably well-designed modules.
As with the analog outputs, the frequency response
of these amplifiers cuts of at about 250 kHz, which is
just enough that two 960µs trigger pulses on exact
1 ms boundaries (thus, separated by a low of 40µs)
will be clearly distinguishable from each other.

These signals can be driven in GPIO mode just
by setting and clearing bits 14 and 8, respectively,
of the LATB register. The standard firmware also
sometimes PPS maps them to the output compare
peripherals (OC1 for channel 1, OC2 for channel 2)
in order to generate pulses or frequencies. It is proba-
bly never useful to tri-state the outputs; in that case
the op amps will see disconnected inputs, with un-
predictable effects.

LEDs
The two LEDs are connected to microcontroller
pins 16 (RB7) and 18 (RB9) with bidirectional cur-
rent driver circuits. Each LED can be red, green,
or off, with the brightness in the two modes in-
tended to be roughly equal (which ends up meaning
about 9.9 mA in green mode, 2.4 mA in red mode).
When the microcontroller pin is tri-stated, the cur-
rent should be zero (to within the limits of op amp
offset) and the LED will be off. So the register bits
should be set as follows:

LATB TRISB LED state
1 0 green
0 0 red
– 1 off

Use bit 7 of the LATB and TRISB registers for
the left LED and bit 9 for the right LED.

In principle, you could get yellow output by
switching rapidly between red and green, and you
could even use an output compare (possibly OC5,
which is not used for anything else by the current
firmware) to accomplish the switching without CPU
intervention. However, doing that means changing
the load on the power supply by several milliamps
at the frequency you’re doing the switching, and if

26

that’s an audio frequency it may well end up causing
interference that will be heard in the outputs of other
modules in the synthesizer, given the poorly decou-
pled power systems many Eurorack users install. So,
the standard firmware does not attempt to turn the
LEDs yellow, and if you write code for it, please do
not do it in such a way that I will be blamed.

There is a driver in ledblink.s, described in its
own chapter of this manual, for optionally displaying
different patterns of on/off and red/green blinking on
the LEDs.

SRAM
The Gracious Host is equipped with a 128K SRAM
chip, a Microchip 23LC1024, attached to the SPI bus
pins (SPI1 on-chip peripheral, described in the previ-
ous chapter). This chip is used during firmware up-
date: the old firmware reads the new image into the
SRAM, then runs the “loader,” which is a small sub-
routine free of dependencies that reflashes program
memory using the data in the SRAM. This way, the
large and complicated code needed to talk to the USB
device and decode the FAT filesystem, does not need
to remain in program memory during the re-flash op-
eration, and every field-programmable byte of pro-
gram memory can be replaced by the new firmware.

The SRAM chip is not, at present, used in any
other way by the firmware; but it is available for use
in other ways by future or third-party firmware ver-
sions.

The steps to send a command to the SRAM are
similar to those for the DAC, modified by the fact
that the connection to the SRAM is two-way.

• Assert RA3 (microcontroller pin 10) low to tell
the SRAM to connect to the SPI bus, possibly
with bclr LATA, #3.

• Send a command to the SRAM through the SPI
peripheral. Each starts with an 8-bit instruc-
tion and then possibly has other fields depend-
ing on the command. Commands are summa-
rized below and detailed in the 23LC1024 data
sheet.

• After transferring all data for the command
through SPI, retract RA3, as with bset LATA,
#3.

The usual cautions for SPI apply here. Every byte
written must be matched by a byte read. Normally
every byte of live instruction or data will be matched
by a dummy byte of discarded garbage, and every
byte of live data returned by the SRAM must be
triggered by writing a dummy byte, which will be ig-

nored. As discussed in the previous chapter, a silicon
erratum affecting the SPI peripheral means that the
SPITBF bit used for detecting a full transmit buffer
may not work properly, and I think it is safest never
to completely fill either buffer.

The SRAM is capable of “double” or “quad” se-
rial modes, which are modifications of the SPI pro-
tocol using two or four data lines to transmit more
bits per clock cycle. The Gracious Host’s microcon-
troller does not support these modes and there are
not enough pins available to do it by bit-banging.
The SRAM also supports three different modes for
the READ and WRITE commands, selected by writ-
ing to a mode register with the WRMR command.
In sequential mode, which is the default, you specify
a starting address to read or write and then read or
write as many bytes as desired; they will automati-
cally access consecutive addresses, wrapping around
from 0x01FFFF to 0x000000. In byte mode, you spec-
ify a byte address and then read or write that one
byte; longer transactions are not allowed. And in
page mode, you specify a starting address and read
or write a variable number of bytes as with sequential
mode, but the operation will wrap around at the end
of the 32-byte aligned region of memory containing
the starting address.

Valid commands for the SRAM chip are as follows.
• READ: send opcode 0x03, then a 24-bit address

(big endian, top 7 bits ignored), then read as
many data bytes as appropriate.

• WRITE: send opcode 0x02, then a 24-bit ad-
dress (big endian, top 7 bits ignored), then
write as many data bytes as appropriate.

• EDIO and EQIO: opcodes 0x3B and 0x38 enter
dual and quad serial mode respectively, but this
is not a useful thing to do on Gracious Host
hardware.

• RSTIO: send opcode 0xFF to undo the effect of
EDIO or EQIO, returning the chip to plain one-
data-line SPI mode; should not be necessary
because we never go into dual or quad mode
anyway, but the firmware does this before each
session of using the SRAM just in case. The
SRAM chip is designed to recognize this com-
mand sent by plain one-data-line SPI even if it
is in one of the other modes.

• WRMR: “write mode register.” Send opcode
0x01, then the new value for the mode register.
The useful and legal values are 0x00 for byte
mode, 0x40 for sequential mode, and 0x80 for
page mode.

27

• RDMR: Send opcode 0x05, then receive the
one-byte current value of the mode register.

Because the current firmware does not use the
SRAM much, it does not provide a complete library
for talking to the SRAM. But there is example code
to imitate in usbmass.s and loader.s, and a glob-
ally available subroutine called SPI1_READ_BYTE
which may be useful. That receives one byte from
the SPI peripheral, with appropriate handshaking to
wait for the byte to arrive. It returns the byte in the
low byte of W0, while preserving the former low byte
of W0 by swapping that into the high byte. Call-
ing this subroutine twice receives a big-endian 16-bit
value.

Remember that every real write should be fol-
lowed by a dummy read, and every real read should
be preceded by a dummy write. The total number of
bytes read and written must balance. Trying to read
when there has been no corresponding write may lock
up the firmware until the WDT resets it. Writing at
least a little bit ahead of reads is necessary, but going
too far may cause bytes to be lost in the full buffer.
As long as the excess of writes over reads is kept in
the range zero to seven bytes, there should be no dan-
ger of buffer overflow or deadlock. And the interface
is sufficiently fast in comparison to the processor’s in-
struction speed, that attempting to keep the buffers
from emptying and maximize throughput, is proba-
bly not worthwhile.

ICD/ICSP header
There are pads on the back board of the module for
a 1×6-pin, 0.1′′ header connector called P4. This
would not be installed in a standard build, but some-
one wishing to use Microchip’s in-circuit tools for
programming and debugging Gracious Host firmware
could add this header to a module to have a place
to plug in the debugging tool. Note the index pin
(pin 1) of the header is at the top of the board; it
is important to plug in the debugging tool right way
round.

The ICD/ICSP header connects to pins 1, 4, and
5 of the microcontroller and also to the 0V and +3.3V
power supplies. A USB debugging tool like a PICkit
will normally draw a fair bit of power and it is prob-
ably not advisable to let it draw that power from the
Gracious Host; nor will it work to power the Gracious
Host from the debugging tool, because the Gracious
Host also needs +5V and ±12V. Ideally, you should
power up both the Gracious Host and the debugging
tool, separately, before plugging them into each other.

Voltage regulator/bus access
There are pads on the back board for an optional
+5V regulator (7805 chip) which regulates the Euro-
rack +12V supply down to +5V, to supply USB bus
power and be further regulated down to +3.3V (by an
external regulator on the Gracious Host board) and
from there to +2.55V for the microcontroller core (by
its internal regulator). Adding the +5V regulator is
not recommended for production builds, but it could
be useful in a debugging situation when it is desired to
power up the module with a ±12V bench supply. The
Gracious Host itself consumes at most about 30 mA
of +5V power (most when the front-panel LEDs are
lit), but because it also supplies +5V from this bus
to the USB-connected device, the total current drawn
from the supply may be significantly more.

There is a jumper block on the back of the mod-
ule (J9) for selecting whether to connect the inter-
nal +5V bus to the Eurorack bus (for normal power-
up from a Eurorack +5V supply) or to the optional
on-board regulator (if installed). The same jumper
block also selects whether to connect the left analog
and digital output jacks, to the Eurorack CV/gate
bus lines, to allow the Gracious Host to control other
modules by default with no front-panel patching. The
jumpers are not directly readable in firmware; at most
their consequences might be noticed. But do note
that every viable configuration requires at least one
jumper to be installed. If the module is unable to
power up at all, check that there is a jumper installed
on the back.

For more information on the jumper settings and
+5V power requirements, see the UBM.

28

Build environment and tools
The Gracious Host firmware is designed to be built
in a command-line Linux environment, with the GNU
Assembler for PIC24 as distributed by Microchip un-
der the name “XC16.” I have not tested the build sys-
tem in other command-line environments and recom-
mend caution if you attempt to build firmware other
than under Linux.

XC16 Assembler
Microchip distributes a “compiler” package called
XC16, primarily intended for C programming, which
actually contains the assembler and the rest of
the toolchain as well. Downloading and in-
stalling this is reasonably straightforward. Make
a note of where you installed it, because you will
need to edit that into the Gracious Host Makefile
later. The default installation location seems to be
/opt/microchip/xc16/v1.23 with the version num-
ber modified to match the version of the package that
was just installed. I did most of the development us-
ing v1.60, and v1.70 seems to be the latest as of this
writing.

I do not recommend paying Microchip money for
this package. Almost all of it is simply a copy of
the GNU multi-architecture toolchain, covered by the
GNU General Public License. Microchip only added
some customizations of their own, including the ma-
chine definition for PIC24 (which is of some signif-
icant value beause of the weirdness of the architec-
ture) but also including the deliberate crippling of the
C compiler’s optimization features just so that they
could demand a payment for a “license key” to restore
those features! That seems to be not in the spirit of
fulfilling their obligations to the original authors of
the code in question.

Building the firmware
Unpack the source distribution and go to the
firmware subdirectory. Edit the XC16DIR environ-
ment variable at the top of the firmware Makefile to
point at where you have installed XC16.

To build the firmware, run make in the firmware
subdirectory of an unpacked Gracious Host source

distribution. You can also run make in the root of
the distribution (one level above) to recurse into sub-
directories and build documentation too.

The Makefile is written assuming GNU Make and
supports a “clean” target to remove object and tem-
porary files, and a “debug” target which actually does
the same thing as make or make all; this is intended
to help support the MPLAB X IDE, which tries to
draw a distinction between “debug” and “production”
builds.

The build process is a bit complicated, especially
when it comes to preparing a loadable image for the
module to re-flash itself from USB. There are several
steps of scanning object files, extracting addresses,
and rewriting include files to get information into
the boot loader. Because the loadable image includes
checksums covering other checksums, there is also a
loop that builds an image with checksums, recalcu-
lates the checksums and writes them in, then tries
again until all checksums match and require no fur-
ther changes. It will not work to just assemble the
source files and link them; you need to really use the
supplied Makefile and associated Perl scripts. Note
that this also means you should not allow a tool like
MPLAB X IDE to destroy the supplied Makefile.

A Perl interpreter is required, and it needs to
have the String::CRC32 module installed. Other Perl
modules may possibly also need to be installed; I’m
not sure which ones are commonly found on default
installations. Pay attention to build error messages
and supply the missing pieces as necessary.

MPLAB X IDE
Microchip’s “MPLAB X IDE” product has many is-
sues, but it may be a necessary evil if you wish to
do in-circuit debugging with a tool like their PICkit
programmer/debugger. The main problem is that
MPLAB X IDE wants to put itself on top: that is, it
wants to be in charge of the build process and have
other tools become part of its system instead of it
being a part of some larger system. If you must use
MPLAB X IDE, here are some tips on getting it to
work.

29

You will need to create a “project.” When doing so
(first screen of the wizard, titled “Choose Project”),
choose “User Makefile Project” as the type to create.

On the “Select Device” screen, choose
“PIC24FJGB002” as the device, and your choice of
tool (Simulator, PICkit, or whatever). The “Family”
field seems to only narrow down the drop-down
options for the device list; the most useful value
is “16-bit MCUs (PIC24)” but you may get better
results by typing the number directly into the device
box instead of digging through the (very long, even
when narrowed) list of all possible MCUs.

On the “Select Project Name and Folder” screen,
it is important to check the “Use project location as
the project folder” box (which is not default) and
select the “project location” to be the firmware sub-
directory of the unpacked Gracious Host source dis-
tribution. If this is not done, MPLAB X IDE will
attempt to create a “project” directory with a .X ex-
tension and will expect all builds to happen there,
which will not work.

On the “Create User Makefile Project” screen, set
the “working directory” to “.” (that is one period,
meaning current directory) and set the following val-
ues.

• Build command: make
• Debug build command: make debug
• Clean command: make clean
• Image name: firmware.elf
• Debug image name: firmware.elf
Creating a project this way will probably over-

write the existing Makefile, so you may have to re-
extract it from the source distribution. I believe these
settings will prevent MPLAB X IDE from overwrit-
ing the Makefile again in the future, however – it only
seems to do it on the initial project creation.

In-circuit debugging with MPLAB X IDE and a
debugging tool like a PICkit has two modes for break-
points: hardware breakpoints and software break-
points, the latter also called “unlimited” breakpoints.
Hardware breakpoints make use of features built into
the silicon. They have less performance impact, and
they can do clever things like breaking on access to a
data memory address (not only an instruction execu-
tion). However, there is an overrun associated with
hardware breakpoints: after a hardware breakpoint
triggers, one more instruction will execute before the
code actually stops. That can be annoying. It is pos-
sible to work around the overrun by simply placing
the breakpoint one instruction earlier than the point
where you really want it to break, but in densely

branching control flow it may not always be possi-
ble to know which instruction is “one instruction ear-
lier,” and this workaround is not applicable to break-
ing immediately upon wakeup from idle mode, nor
to the debugger’s “run until return” feature. Also,
you only get four hardware breakpoints, and really
you only get three, because debugger features like
single-stepping also depend on the silicon resources
involved.

So MPLAB X IDE will urge you to switch to soft-
ware breakpoints when you approach the limit for
hardware breakpoints, with pop-ups that do not ex-
plain the consequences of saying “yes.” It is easy to
make this switch by accident. I have several times
found software breakpoints selected when I was not
aware of having deliberately selected them. The num-
ber of software breakpoints is unlimited, and they
really break at the specified locations. The trouble
is, they are implemented by repeatedly erasing and
reprogramming the chip’s program memory – the de-
bugger actually edits the code on the fly, presum-
ably to insert the undocumented break instruction.
That can wear out the chip’s program memory rel-
atively quickly. The chip’s program memory is sup-
posed to be good for 10,000 erase cycles, which should
be plenty (comparable to the lifespan of components
like jack sockets) in normal module use where some-
one might be recalibrating their module or swapping
in new firmware at most once per day long-term av-
erage. But 10,000 erase cycles could quickly be used
up if someone is doing intense debugging with soft-
ware breakpoints enabled. So I recommend avoid-
ing software breakpoints, unless maybe on a module
specifically built for development purposes that you
are willing to consider sacrificial if you wear the chip
out.

The configuration include file
There are some configurable options in the file con-
fig.inc, which you can adjust as desired. These are
described in detail in the comments inside the file.
Some that may be of interest even in “production”
firmware are for controlling things like the rate of
pitch bend with the shift keys in the typing keyboard
driver.

Testing firmware during development is difficult
on the live hardware, even with ICD, because the
firmware needs to communicate with off-chip periph-
erals that have their own timing requirements, and
the debugger only directly controls the chip and its
on-chip peripherals. If the firmware is in the middle

30

of talking to a USB device when the debugger stops it,
then it will probably be at least a few seconds before
the microcontroller starts executing code again, and
by then the USB device will long since have given up.
When first writing the firmware, I also wanted to do
development on it before the Gracious Host module
hardware existed at all; and when it existed but was
not in its final form. On non-live hardware or in a
software simulator, peripherals designed for interact-
ing with the outside world may not present sensible
results to the firmware, because they do not have the
normal outside world to work with.

So there are a number of options in config.inc de-
signed to help with testing the firmware other than in
the normal hardware configuration. The FRC_OSC
option activates the on-chip oscillator, for running
on development boards with no external clock oscil-
lator. The NO_WDT option disables the watchdog
timer (although the debugger will probably handle
that anyway). And there are several symbols starting
with SIMULATE_ that assemble extra code to sim-
ulate different hardware devices included in the Gra-
cious Host module; that way, the higher-level code
that requires results from those devices can be tested
on an evaluation board or even in Microchip’s soft-
ware simulator, where those devices cannot produce
realistic results when accessed directly.

Some other debugging aids are intended for
use when running on the real hardware. The
FILL_RAM_DEAD symbol causes the firmware
to fill all the general-purpose RAM with the
value 0xDEAD at start-up. That makes it eas-
ier to see where other data has been written,
for detecting buffer overruns and similar. The
LEDS_ON_USB_ATTACHED symbol is specifi-
cally for debugging detection of USB attach and de-
tach (which took a lot of debugging when I was
writing that code); it may conflict with other uses
of the LEDs implemented later. Define SEQUEN-
TIAL_CALIBRATION to make the two calibration
threads run sequentially instead of simultaneously;
the stack manipulation needed to get them running
simultaneously screws up Microchip’s debugger, so
it’s usually easier to turn it off when the multitask-
ing itself is not the thing being debugged. The
TRAP_HANDLERS symbol is a bitmask of stub
trap handlers that should be defined, each of which
will contain a couple of nop instructions as a target
for debugger breakpoints, before they all feed into a
master trap handler that also serves as a target and
then resets the microcontroller. Putting breakpoints

in trap handlers is useful when trying to figure out
what kind of trap actually occurred, and to get a look
at the stack, before the microcontroller resets.

Pin 14 of the microcontroller (GPIO pin RB5)
is run out to the test point P5 on the back of the
module, and it can be useful for examining timing
of firmware events while the code is running. You
can add instructions like bset LATB, #5 and bclr
LATB, #5 at appropriate points in the code and then
watch the test point with an oscilloscope to see what
is going on, in something like the hardware equiv-
alent of “printf debugging.” Two symbols are pro-
vided in config.inc, PULSE_PIN14_ON_BUSY and
PULSE_PIN14_ON_SOF, for events that I wanted
to watch often enough to be worth adding some in-
frastructure; but I also found it useful during devel-
opment to add instructions at other points ad hoc,
modifying the code as necessary, to trigger the scope
on events of interest.

Some more elaborate tests are written in assem-
bly language and designed to be run using the de-
bugger or simulator. These are controlled by sym-
bols starting TEST_, each of which assembles a short
infinite-loop test routine. If SKIP_TESTS is not de-
fined, then after initial reset the code will jump to
one of these tests instead of the firmware main loop
(and cause a crash if none of them are activated); so
SKIP_TESTS needs to be defined in a “production”
version. The different tests are described in their own
chapter, later in this manual.

Special-purpose include files
As often happens in complicated software builds,
it is sometimes necessary to pass small chunks of
information among different files outside the usual
source/object file pattern. For instance, building
an installable image for firmware updating requires
knowing the final addresses of symbols in memory,
which have to be determined by scanning the linker
output. The Gracious Host firmware build generates
several include files automatically, which get included
in appropriate source files to pass this kind of infor-
mation around. They are summarized here and dis-
cussed in more detail in the chapters for the specific
source files involved.
notetbl.inc A table of period values to be used with

output compare units for generating musical-
note frequencies; generated by the mknotetbl
Perl script and included in firmware.s.

rndpage.inc Defines a randomly-chosen page of
program memory that will be used for calibra-

31

tion data by calibration.s. The random selec-
tion is made by inline Perl code in the Makefile.

simdrive.inc Defines the contents of the simulated
USB Mass Storage device for testing the FAT
code. Included by usbmass.s, conditionally on
drive simulation being enabled by config.inc.
This include file is handwritten, but in some
configurations it depends on binary data gener-
ated by the mksimdrives script, which in turn
needs to be manually invoked (the Makefile will
not do it) because it needs to run as root to
mount and unmount loopback devices.

loader-addr.inc Included by loader.s when assem-
bling the “high” version of the loader, to tell it
exactly where in memory that copy should be
placed. Created by the mkloaddr Perl script,
after measuring the size of the “low” version of
the loader.

image-syms.inc Defines addresses and CRC values
that will need to be written into the loadable
firmware image. The Makefile creates this us-
ing the mkimagesyms Perl script, in a loop:
first it creates an image using placeholder val-
ues (which will not be loadable), then generates
new values for all the symbols based on that im-
age, re-generates the image with the new values,
and repeats until the values do not change.

fw-pages.inc Page occupancy (symbols identifying
which program memory pages will need to be
overwritten) for the loadable image. Generated
by the dmp2bin perl script after scanning the
firmware ELF image.

image-id.inc Identifying information (hostname,
username, and the date) added to the header of
the loadable image to make it easier to recog-
nize the provenance of random binary images.

The listing file
Run make listing.pdf to generate a pretty-printed
PDF of all the listing files generated during firmware
assembly. This mostly just exists because I think
it looks cool, but it may be easier to read than the
original .s source files, and because it also includes a
hex dump of the assembler’s output, it can sometimes
be useful for purposes like debugging loader image
files, when it may be desired to find the exact bytes
that correspond to particular lines of code.

32

Programming tips, conventions, and tools
This chapter gives some general notes on program-
ming the PIC24, as well as the conventions followed
by the Gracious Host firmware. Details of specific
source files are in subsequent chapters.

Case and spelling
I usually like to give global symbols names in all
caps, with words separated by underscores, like SAM-
PLE_GLOBAL_SYMBOL. Local symbols are low-
ercase, like sample_local_symbol. If I want to make
something less visible in scopes where it has to ex-
ist for technical reasons, I usually put an underscore
at the start, like the global symbol _common which
is only used inside macros. Symbol names created
by Microchip’s tools often start with a double under-
score and use other capitalization, like __DefaultIn-
terrupt.

Labels and indentation
I put labels on lines of their own, because that makes
it easier to edit them. Often it is desired to move
a label without moving the instruction it points to,
and trying to combine a label with an instruction on
the same line would make that harder. I also in-
dent instructions, not labels, with one tab charac-
ter to keep the listings consistently formatted. Users
of high-level “structured” programming languages
should be aware that the customs of assembly lan-
guage are different: nesting level of program control
flow is not normally indicated by indentation in as-
sembly language – partly because assembly language
often does not have a strict nesting structure any-
way – and indentation customs designed to explicate
deeply-nested code structures are not relevant here.
Nonetheless, in some nested macro and conditional
assembly directives where it seems to make sense, I
do use a two-space indentation per level to make the
structure clear.

The assembler supports a feature called local sym-
bols. The digits 0 through 9 can be used as labels (like
“3:”) any number of times each without conflicting.
Then in any instruction you can refer to one of these
digits with “f” for “forward” or “b” for “back,” and

it will automatically refer to the next or previous in-
stance of that label. Here is an example.

bra 1f ; skip past the do-nothing loop
2:

; do-nothing loop
nop
nop
bra 2b

1:

Local symbols may be a somewhat controversial
feature, because of a perception that they can cause
bugs. My own view is that they should be used fre-
quently, whenever a label is referred to from nearby
and does not need to be available at a greater dis-
tance. Local symbols make it easier to cut and paste
chunks of code without name collisions or unexpected
control flow; I think they prevent more bugs than
they cause. Bearing in mind that this form of assem-
bly language basically has no other way of scoping
symbols narrower than an entire source file, it is use-
ful to have a way to refer to “that instruction right
there, I know the one I mean” without forcing the
programmer to always invent a widely scoped unique
name for it.

The assembler implements local symbols by re-
naming them to ordinary symbols with control char-
acters and serial numbers in their names. The con-
trol characters are intended to be impossible to cre-
ate any other way and thus not collide with ordinary
programmer-specified symbol names, and the serial
numbers are intended to prevent the local symbols
from colliding with each other.

Calling conventions
Programming in assembly language makes it less nec-
essary to have formal calling conventions of the kind
that might be needed by a high-level language com-
piler. Most subroutines are used in only a few places,
and in general I feel free to modify the subroutine’s
input and output effects to suit the callers and vice
versa. When a subroutine is global (that is, visible
outside the current source file) I try to document its

33

conventions clearly in a comment at the start of the
subroutine, but it is always a good idea to read the
actual code to make sure there will not be unexpected
side effects.

Usually, subroutines take their inputs in low-
numbered working registers like W2–W6 and return
results in W0 or W1. Low-level subroutines may also
trash some of the low-numbered registers, but will
usually try to leave higher-numbered registers un-
changed. That frees the higher-numbered registers
for use by higher-level code that calls the low-level
code, so in general, register numbers increase with
higher levels of abstraction.

In general, I do not store function arguments or
results on the stack. There is no flexible malloc()-
style memory allocation in the firmware; dynamic
memory allocation to the extent it is used is all on
the stack.

In some places, I use W14, the stack frame pointer
that is special to the lnk/ulnk instructions, for spe-
cial purposes. Some of the USB code expects to work
in buffers pointed to by W14. The exception han-
dling code saves and restores W14 as part of its own
stack-frame handling. This register is also used – in-
compatibly with stack frames – for the other thread’s
program counter in the multithreaded code of the cal-
ibration routine.

Conserving space
This microcontroller has a lot of speed and not very
much memory.

Some of Microchip’s example USB programs for
PIC24, when compiled by the C compiler they dis-
tribute, will not actually fit on this particular chip.
Microchip represents it as necessary and appropriate
to pay them $40 per month for an online-activated
license key to restore the optimization features they
deliberately crippled in their distribution of GNU C,
a demand that seems unlikely to be legal, let alone
morally acceptable or appealing to my own sensibili-
ties, given Microchip’s obligations under the General
Public License to the original authors of GNU C.

But even with uncrippled optimization, the C
compiler would be hard pressed to fit everything
into the microcontroller’s memory – especially given
the additional demands associated with being able
to re-flash the firmware from a USB source. The
Microchip-provided USB driver contains multiple ab-
straction layers not really relevant to hardware as
small as ours, and it depends on language and library
features like “heap” memory management. It is re-

ally meant for use on larger members of the PIC24
family; our chip is near the bottom end of the range.

When first planning this project, I thought it
would be necessary to hold two copies of the firmware
in flash at a time, so that the old firmware could load
the new and then transfer control, and that effec-
tively halved the available space, increasing the pres-
sure further.

With all that in mind, the Gracious Host firmware
is written in hand-optimized assembly language in-
stead of C, with the priority pretty much always being
smaller memory consumption in preference to speed
or clarity. It is possible that I have taken this em-
phasis too far, because as of this writing the firmware
fills much less than half the space on the chip, even
including some features I originally thought I might
be forced to leave out. My code has turned out to
be tighter than I expected from my earlier tests and
estimates. But at least that means there is plenty
of room for future expansion. In this section, I go
through some techniques that may be useful to pro-
grammers attempting to keep the code as small as
possible.

Use space-saving instructions The program
memory address space is 24 bits, and so are the in-
struction words; so a single-word instruction cannot
contain a whole program memory address when it
also needs some bits to say what kind of instruction
it is. As a result, instructions affecting control flow
tend to have “long” and “short,” or “far” and “near”
versions, depending on whether they use a second in-
struction word to have space for a full 24-bit address,
or use some kind of abbreviated target (usually a 16-
bit signed number of words offset from the current
program counter) to keep the instruction to just one
word. But here’s the thing: we only have about 21K
words of program memory on this particular chip. A
16-bit offset is enough to hit any instruction from any
other; so the short/near control-flow instructions are
almost always good enough.

As such, it’s preferable to use unconditional bra
instead of goto, and rcall instead of call.

A similar issue applies to data: some instructions
that touch specified locations in data memory work
better, or are only usable at all, for addresses located
in the first 8K of the data memory space. That is
the range 0x0000 to 0x1FFF. We only have 8K of
RAM, but that RAM is not all within the first 8K of
the address space because the RAM starts at 0x0800,
after the 2K special function register area. So the first

34

6K of RAM is more accessible than the final 2K.
The Gracious Host firmware tries hard to first,

keep all variables with defined locations allocated in-
side the first 6K of RAM (the final 2K should nor-
mally be part of the stack reservation), and second,
make sure symbols and sections are marked up in
such a way that the assembler will know these ad-
dresses are in the first 6K and will allow accessing
them with the better instructions. In particular, the
common_data section defined in firmware.s is given
the “near” attribute, so that variables defined within
it should be available with instructions that make
that assumption.

The “skip” instructions, btsc, btss, cpseq,
cpsgt, cpslt, and cpsne, can often save an instruc-
tion here or there, especially when (as is often possi-
ble) they’re combined with making one branch of an
if/then/else unconditional. Consider changing some-
thing like this:

cp W0, W1
bra lt, 1f
mov #0x123, W2
bra 2f

1:
mov #0x456, W2

2:

to something like this:
mov #0x456, W2
cpslt W0, W1
mov #0x123, W2

Making the mov #0x456, W2 unconditional
doesn’t matter because it is immediately overwritten
by the other branch if applicable, and this rewrite
saves two instructions. Note that compare and
branch instructions, like cpbeq, are mentioned in the
assembly language manual because they are available
in some other PIC24 families, but if you check the
fine print you will realize that those are not actually
available in PIC24F.

Sharing a tail If two subroutines end with the same
sequence of two or more instructions, then one of
them can branch to the other. This costs two cy-
cles for the branch, but it saves n− 1 instructions in
each place where it’s used. Consider these two sub-
routines, which save and restore registers in the same
way:

foo:
push W0
push W1
; do foolish things
pop W1
pop W0
return

bar:
push W0
push W1
; do barbaric things
pop W1
pop W0
return

The last three instructions are the same for both,
so we can replace those instructions in one subroutine
with a branch to the other, saving two instruction
words:

foo:
push W0
push W1
; do foolish things
bra RETURN_W0_1

bar:
push W0
push W1
; do barbaric things

RETURN_W0_1:
pop W1
pop W0
return

Convenience labels The Gracious Host firmware
uses the tail-sharing technique above extensively, and
some subroutine tails that seem like they may be
of general interest are exported as global symbols
with consistent names. In particular, for returning
from an ISR and restoring the first few working reg-
isters that have been pushed on the stack in ascend-
ing order, there are the labels RETFIE_W0 and
RETFIE_W0_1 through RETFIE_W0_5, defined
in usb.s. There is also ULNK_RETURN, for return-
ing from an ordinary subroutine while discarding a
lnk/ulnk stack frame.

Sharing a tail usually only saves space when the

35

tail is at least two instructions long, because of the
need for an unconditional branch to get to the shared
tail. But in some cases, when a subroutine only ter-
minates through a jump anyway, it can be useful to
share a single instruction. Consider this “while” loop:

1:
cp W0, W1
bra gt, 2f
; do things
bra 1b

2:
return

The bra gt instruction doesn’t really need to
go to that particular return; it could equally well
point at any return anywhere. So if there is an-
other return somewhere in program memory, then
we do not need this one in particular to exist at
all. The firmware provides a global label called RE-
TURN_INSN, pointing to a return instruction that
needed to exist anyway, so the branch that exits the
loop can be changed to bra gt, RETURN_INSN and
foo no longer needs a return of its own.

The firmware uses all-caps names ending in
_INSN for single-instruction convenience labels.
Others it provides are GOTO_W4_INSN, RE-
SET_INSN, and RETFIE_INSN.

PIC24 assembly language provides a special in-
struction called retlw, which is a return that also
moves a 10-bit literal value to a working register.
This seems to be intended for returning values from
functions in higher level languages. It’s worth know-
ing about, but in fact I have seldom actually found it
useful in assembly language. Something similar that I
have found useful is for a subroutine to return “zero”
or “non-zero” status to be checked by an instruction
like bra z in the caller; and to support that, there are
global labels Z_RETURN and NZ_RETURN pro-
vided by the firmware. A subroutine that wants to
return with zero or non-zero status can bra to the
appropriate one of these.

Tail call and FALL THROUGH Suppose the last
thing one subroutine does is to call another, like this.

foo:
; do foolish things
return

bar:
; do barbaric things
rcall foo
return

Then the rcall can be changed to a bra, elimi-
natng the return. The entirety of the call to foo is,
in effect, being used as a shared tail.

foo:
; do foolish things
return

bar:
; do barbaric things
bra foo ; tail call

I try to include a comment saying “tail call” when-
ever I use this technique, to make it clearer to readers
that that is what’s going on.

We can use tail call for every subroutine that hap-
pens to end with a call to foo, however many of those
there may happen to be. However, with just one of
them we can also eliminate the bra instruction by
reordering the subroutines to put the caller immedi-
ately before foo in memory and just letting execution
continue past the end of the caller, like this:

bar:
; do barbaric things
; bra foo ; tail call
; FALL THROUGH

foo:
; do foolish things
return

When using the fall-through technique, I like to
leave the bra instruction that was eliminated in place
in the source code but commented out, and add a
comment saying “FALL THROUGH,” to make the
special control flow more visible. If I ever move the
subroutines around again in the future, I want to be
reminded that then I will need to put the bra back
in; and if I ever go looking for “missing return at the
end of subroutine” bugs, I want to be reminded that
in this case it is being done on purpose.

I also write “FALL THROUGH” comments in
some other similar cases, such as in a couple of jump
tables, whenever control is deliberately intended to
proceed past a point where readers might expect it
to go somewhere else.

36

Star section subroutines If a sequence of n in-
structions is used identically in k different places in
the code, it costs nk (n times k) instruction words.
If the control flow and stack effects do not make it
a problem to do this, then those nk instructions can
be replaced with n+ k + 1 instructions by pulling it
out into a subroutine: then there are n rcall instruc-
tions, plus k for the one copy of the original sequence
in the subroutine, and one more for the return. A
sequence of two instructions can profitably be made
into a subroutine if it is used in at least four places
(eight instructions become seven); a sequence of three
instructions needs to be used in three places to be
profitably made into a subroutine; and four or more
only need be used in two places.

When the shared sequence is longer, it can be
profitable to turn it into a subroutine even if the
different copies are not identically shared, or when
there are in fact stack effects that make a subroutine
call more complicated: the memory saving by hav-
ing only one copy may be enough to pay for some
additional instructions spent rearranging the stack
or handling the differences between different calling
cases. The subroutine find_press_tbl_entry in qw-
erty.s is an example where similar but not identical
logic used in more than one place was first modified
so that it could be identical, and then collapsed into
a subroutine.

Although I’m not sure every programmer would
agree, I think that readability of collapsed identical
instruction sequences can be improved by making use
of the star section feature of the toolchain. A sub-
routine cannot be located in memory exactly where
it is used; else we would need to somehow jump over
it. But the .pushsection assembler directive allows
us to temporarily break out of the stream of instruc-
tions we were assembling, and write some instructions
(namely, the subroutine we’re defining) that will ac-
tually go somewhere else in memory. Specifying the
name of the new section as an asterisk tells the as-
sembler to invent (gensym) a locally-valid name for it
that will not conflict with anything else. Then after
writing the text of the subroutine, .popsection returns
assembly to the original stream. Putting the pieces
together, we can define a subroutine in the source
code in one of the places where it is called and where
a human might want to read it, even though it will
actually go somewhere else in memory and be callable
elsewhere.

Here’s an example. Note the instruction sequence
limiting W0 to at most 100 and copying it to W2.

foo:
; do stuff
mov #100, W1
cpslt W0, W1
mov W1, W0
mov W0, W2
; do stuff
return

bar:
; do other stuff
mov #100, W1
cpslt W0, W1
mov W1, W0
mov W0, W2
; do other stuff
return

If we want to make those four instructions into a
subroutine, we could put the subroutine somewhere
else in the source file, but that would be harder to
read. Using a star section, we can put them inline
while still getting the space saving:

foo:
; do stuff
rcall limit_and_store_w0

.pushsection *, code
limit_and_store_w0:

mov #100, W1
cpslt W0, W1
mov W1, W0
mov W0, W2
return

.popsection
; do stuff
return

bar:
; do other stuff
rcall limit_and_store_w0
; do other stuff
return

For a short subroutine it might even be worth-
while to include a copy of the eliminated instructions,
commented out, at the site of the second call, just so
readers will be able to know what the call does with-
out cross-referencing.

Putting a subroutine into a star section makes the

37

linker’s job more complicated, because it will have to
find a place for one more section in the final memory
map. However, that can be an advantage: when the
linker is trying to find places for all the code sections,
fitting them in between things like the calibration
page that need to be located at specific addresses, it
benefits from having some small relocatable sections
that can fit into otherwise hard-to-use gaps. Creating
at least a few of these small one-subroutine sections
then tends to improve the overall efficiency of mem-
ory utilization.

Common data
Because of the small amount of RAM on the micro-
controller chip, it is preferable to re-use the same
RAM addresses as much as possible. If two variables
will never be used at the same time, then ideally they
should go at the same address rather than having sep-
arate permanently assigned addresses.

One way of re-using memory is to assign it dynam-
ically at run time, either with stack frames (used of-
ten in the Gracious Host firmware) or with malloc()-
style allocation infrastructure (not used in the Gra-
cious Host firmware; too much overhead). For sharing
statically allocated addresses, the PIC24 toolchain
has features to support data overlay and common
data features, each of which has limited usefulness
because of bugs in the assembler and linker. Data
overlay doesn’t work because the linker adds up the
lengths of overlaid sections when allocating memory,
instead of taking their maximum; and common data
doesn’t work for our purposes because a symbol de-
fined at an offset from a common symbol, loses the
common attribute. Instead of using the toolchain’s
broken support, the Gracious Host firmware simu-
lates common data using macros and a little bit of
manual bookkeeping.

The framework code in firmware.s defines a “com-
mon data” area to be shared by all modules that wish
to use this support. The size is set to 1542 bytes by
the __common_size symbol in global.inc; that rep-
resents the largest amount of common data needed
by any module in the current firmware. That is the
loader: it uses 1536 bytes to buffer one page of pro-
gram memory for flash rewriting, plus six bytes of
miscellaneous variables. This allocation would need
to be enlarged if some new module needed more. The
common data area is tagged “near” to ask the linker
to keep it within the first 8K of data memory, allow-
ing the use of shorter instructions; in practice, it is
likely to be allocated at address 0x0850, immediately

after the in-circuit debugging reservation.
The global.inc file also defines a macro called

in_common which is used for allocating variables
within the common area. Call this macro with a la-
bel and size to allocate a symbol of the specified size
in the common area, as follows.
in_common foo, 2
in_common bar, 4
in_common baz, 2

The in_common macro allocates symbols con-
secutively into the common area, without doing any
automatic alignment. Each source file starts fresh at
offset zero in the common area, so symbols from dif-
ferent source files will overlay each other; it is also
possible to start over within a source file by zeroing
__common_loc, as is done in loader.s.

The calibration routine, the loader, the part of
the general USB code that identifies what kind of de-
vice is attached, and several of the per-device USB
drivers all use the common area. The MIDI back-
end and the USB I/O routines that might be called
during device driver operation, do not. In general,
code that may be called from another high-level mod-
ule should not touch the common area, but high-
level modules like these, of which only one is ac-
tive at a time, may use the common area. The
FIND_IN_OUT_ENDPOINTS routine in qwerty.s
is a special case: it assumes a specific layout of end-
point data structures at the start of the common area,
and other drivers that share this routine (such as the
USB MIDI driver) must define equivalent fields at the
same locations.

Exception handling
Catch and throw exception handling is implemented
in utils.s by means of the global symbols TRY,
TRIED, and THROW. Example code for using them
looks something like the following.

mov #handle(catch), W1
rcall TRY

; ...
; if an exception occurs:
rcall THROW
; ...
; also useful as branch target:
bra z, THROW
; ...

; if no exception:
rcall TRIED
; ...

38

catch:
; exception handler

The call to TRY starts an exception-handling
context, which will last until the matching call to
TRIED. Exception-handling contexts can be nested.
Each exception-handling context is associated with
a three-word frame set up on the stack. The call
to TRIED, for non-exceptional execution, should be
made with the same stack pointer that existed imme-
diately after the return from TRY (thus, normally in
the same subroutine or at the same nesting depth).
But THROW may be called, or branched to, at ar-
bitrary stack depth, and it restores the stack to its
pre-TRY condition, including the frame pointer W14,
when it jumps to the exception handler address set by
the TRY call. That is the intended purpose of excep-
tion handling: a nested subroutine can signal an ex-
ception by calling THROW to blow out of a variable
number of levels of nesting, to get to the outer-level
code that expects to handle the exception.

Put the address of the exception handler in W1
when calling TRY. Code symbol addresses need to
be marked with the handle() operator, as shown in
the example, to typecast their officially 24-bit values
into 16-bit values that will fit in data registers. The
assembler will complain if this casting is not done. On
our chip, the high byte of a program memory address
is always zero anyway, so cutting the 24-bit address to
16 bits is easy and harmless. On other PIC24 chips,
handle() might do more elaborate things like forcing
the toolchain to create a jump table in low memory,
allowing a call to the 16-bit address to lead to code
elsewhere in the 24-bit space.

All three of TRY, TRIED, and THROW trash the
W0 register.

The framework code in firmware.s creates an ini-
tial, default context whose handler is RESET_INSN,
so a stray THROW in arbitrary code will reset the
module. Exception handling is used extensively in
the general USB driver for handling error exits from
per-device drivers, and in the targeted peripherals list
(next section) for detecting a successful device or in-
terface match. A few per-device drivers may use it
internally for their own purposes.

Linker-supported tables
The PIC24 linker is capable of doing complicated
things in the line of arranging pieces of code from dif-
ferent source files according to constraints stated in

a linker script. The Gracious Host uses a customized
linker script to do what software “engineers” might
call dependency injection. Code defining per-device
drivers is inserted into the USB device-recognition
code, without each driver needing to be mentioned
in the general USB source file. Using the linker to
provide this abstraction means the core USB code
does not require changes when support for new de-
vices is added. They can be just defined in their
own source files and added to the list of linked object
files in the Makefile. The same mechanism is used
to gather together information about all the typing-
keyboard maintenance codes in the current configu-
ration, defined in whichever source files contain the
actual code to support them without requiring up-
dates to the keyboard driver as codes are added or
changed. Changes to these things are made in as few
files as possible, reducing the opportunity for bugs to
be introduced by failing to keep disparate files syn-
chronized.

In more detail: when any USB host detects a
device has been inserted, it retrieves a device de-
scriptor from the device, through which the device
identifies both the general type of device it is and
its specific manufacturer and model; and then one
or more interface descriptors, through which the de-
vice describes which standard or non-standard USB
protocols it can support. USB hosts in general are
supposed to check this information against a targeted
peripherals list (TPL), to see whether they can talk
to the inserted device and if so, which driver to use.
The necessary matching may be complicated because
there may be drivers for specific devices; for specific
classes of devices; or for specific interfaces within a
device; and sometimes more than one driver could
possibly match a given device and it is necessary to
choose which one is preferable, which will normally
be the one with the narrowest scope, more specifically
tailored to that particular device.

The Gracious Host implements the TPL by split-
ting it into a targeted device list (TDL) and a targeted
interface list (TIL), each of which is a chunk of exe-
cutable code. Upon loading the device descriptor, the
general USB driver executes the TDL under certain
calling conventions. The TDL is expected to throw
an exception if some driver takes responsibility for the
device, with W4 pointing at the driver in question.
Otherwise, the USB driver loops over the interface
descriptors, executing the TIL for each one, until the
TIL throws an exception if there is a driver matching
the interface, again with W4 pointing at the driver.

39

Finally, if no exception has been thrown, the general
USB driver treats the device as unrecognized.

Source files for device drivers register themselves
as being able to handle specific devices, by defining
code snippets to recognize those devices and request-
ing the linker insert those snippets in the TDL or
TIL. There are some utility subroutines available for
use in the snippets to handle common types of match-
ing. The code snippets go in assembly-language sec-
tions with special names, that are picked up by the
linker script and gathered together with similar snip-
pets from other drivers, eventually inserted at the
appropriate points in the USB code. The order of
execution for TDL and TIL entries is significant, be-
cause the first code snippet to recognize the device
or interface and throw its exception will determine
which driver executes. In fact, a system as small as
the Gracious Host is unlikely to need any really com-
plicated logic for choosing among device drivers; but
given I was implementing this support at all, it costs
very little to make it flexible.

Details of the calling conventions for TDL and
TIL code are discussed in the chapter on the usb.s
source file. From the point of view of the linker, the
precedence order is as follows. Choosing the section
names carefully gives fine-grained control over which
fragments execute first, and therefore which drivers
take priority over others.

• The entire TDL runs before the TIL, so any
match on the TDL takes precedence over any
match on the TIL.

• TDL sections with numeric-suffix names
“tdl00” through “tdl49” run first, in increasing
order by number.

• Sections named “tdl” or starting with “tdl_”
run next, in arbitrary order.

• TDL sections with numeric-suffix names
“tdl50” through “tdl99” run last within the
TDL, in increasing order by number.

• The entire TIL runs for each interface descrip-
tor, in the order interface descriptors are re-
turned by the device, so any match on an
earlier-returned interface descriptor takes pri-
ority over any match on a later descriptor.

• TIL sections with numeric-suffix names “til00”
through “til49” run before other TIL entries, in
increasing order by number.

• Sections named “til”; “tpl”; or starting with
“til_” or “tpl_” run next, in arbitrary order.

• TIL sections with numeric-suffix names “til50”
through “til99” run last, in increasing order by

number.
In most cases the order of executioon is not actu-

ally important, and most drivers are expected to use
section names like tdl_foo and til_foo, identifying
themselves for clearer visibility in debugging output;
the other names supported by the linker script are
intended for special circumstances when one driver
needs to do its checks before or after another driver.

Similar, but simpler, linker handling is used to de-
fine maintenance codes for the typing keyboard driver
in qwerty.s. Here the fragments from different source
files are used to define a table of keyboard codes and
jump destinations that, although it is defined in pro-
gram memory, is scanned as data and not executed as
code. Each entry should be two words: first word the
maintenance code for the user to type, in BCD, and
second word the address to jump to. Entries from
sections named “mtbl” or starting with “mtbl_” will
be gathered together to create the table. The order of
entries is not expected to be important. For more in-
formation, see the qwerty.s source file and the chapter
documenting it.

40

LED blinker (ledblink.s)
The LED blinker driver in ledblink.s is a small, sim-
ple assembly language module that may be useful as
an example of how modules are typically structured.
It provides automatic blinking of the module LEDs,
placing little load on the foreground code. Several
other modules use this driver.

The LED blinker steps through 16 states at a rate
of 15.258 Hz, which works out to 1.048 s to complete
the full cycle. For each state, you can choose each of
the two LEDs to be red, green, or off. That allows
for a wide range of different blink patterns.

API
The API is summarized in the code comments
near the start of the file. Call LEDBLINK_INIT
to activate the driver. Set the blink pat-
tern by writing chosen values into the global
variables LEDBLINK_TRIS7, LEDBLINK_TRIS9,
LEDBLINK_RB7, and LEDBLINK_RB9. When
LED blinking is no longer desired, call LED-
BLINK_DONE.

In more detail: the driver cycles through the 16
bits of all the global variables, starting from the LSB
and moving to the MSB. In each state, the TRIS
bits (“tri-state”) specify whether the corresponding
LED will be on or off (bit value 1 for off). The RB
bits (“register B”) specify whether the LED will be
green (RB bit value 1) or red (RB bit value 0). The
registers with “7” in their names refer to the left LED
and those with “9” in their names refer to the right
LED. These variable names are chosen to line up with
the microcontroller register and pin names (TRISB,
LATB, RB7, RB9) used when directly accessing the
LED hardware.

For example, to turn off the LEDs entirely,
set LEDBLINK_TRIS7 and LEDBLINK_TRIS9
to 0xFFFF, as with the setm instruction. To
blink the LEDs back and forth slowly, in green,
set LEDBLINK_RB7 and LEDBLINK_RB9 to
0xFFFF; set LEDBLINK_TRIS7 to 0x00FF, and
set LEDBLINK_TRIS9 to 0xFF00. Setting LED-
BLINK_TRIS7 and LEDBLINK_TRIS9 both to
0x00FF would make the LEDs blink together instead

of alternately. To make just one LED toggle very fast
between red and green, not shutting off at all, clear
its TRIS variable and set its RB variable to 0x5555.

How it works
This driver uses general-purpose Timers 1 and 2 to
keep track of the current state of LED blinking. That
may seem an unecessarily large use of resources, but
the module has few other demends on these general-
purpose timers.

Timer 1 is driven by the 16.000 MHz instruction
clock prescaled by 1:256, for an input clock frequency
of 62.500 kHz. Its period is the maximum (65536
counts), giving a reset rate of 0.954 Hz: the overall
cycle time of the LED blinker. Timer 2 gets the
same 62.500 kHz prescaled clock, but with a period
of 4096 counts, for a reset rate of 15.259 Hz. These
configuration settings are put in place by STAN-
DARD_IO_CONFIG in firmware.s.

The idea is that every time Timer 2 resets, we
will update the LED state, looking at the high bits
of Timer 1 to find out which state we are in. We
don’t want those bits to be changing while we look
at them, so we arrange for the two timers to reset
2048 counts (half of Timer 2’s period) apart from
each other. That way we can be pretty sure the ISR
for Timer 2 will be running while the high bits of
Timer 1 are quiet – despite the fact that these timer
ISRs run at low priority (priority 2, set in firmware.s).
Even if there were a synchronization problem, reads
from the timers are atomic, and the extent of getting
the wrong value would just be the LEDs showing the
wrong state for about 1/15 of a second.

The LEDBLINK_INIT subroutine is straightfor-
ward: it just sets all the control variables to 0xFFFF
(LEDs off, and will default to green if turned on) and
turns on the interrupts. The LEDBLINK_DONE
subroutine is similarly very simple: it just disables
the interrupts and turns off the LED hardware.

The ISR for Timer 1 forces Timer 2’s count to
2048 (halfway through Timer 2’s period), about once
per second just to keep them in the proper sync. A
slightly interesting point is that it accomplishes that

41

by using the clr and bset instructions, to avoid over-
writing and thus needing to save and restore a work-
ing register. The operation is not atomic but doesn’t
need to be; the counter only counts at one count per
256 instructions, and one stray count that might get
in between the two instructions will not harm any-
thing.

The ISR for Timer 2 does the real work of LED
blinking. It grabs the top four bits of Timer 1’s state,
uses them to index into the four global variables, and
sets the hardware bits that control the LEDs accord-
ingly. It also sets the SI_BLINK1 and SI_BLINK2
flags, which are used by the calibration routine for
timing pauses; two of these flags because each of the
two threads may want to do it independently.

42

Miscellaneous utilities (utils.s)
The utils.s source file contains a few small subroutines
that may be used in multiple places throughout the
firmware.

Exceptions
The API for exceptions is described in the “Program-
ming tips, conventions, and tools” chapter of this
manual.

As for the implementation: a static variable
named exception_frame records the currently active
exception frame. It literally points at the word just
after the exception frame, because it records the value
of the stack pointer (W15, next available word of
stack) immediately after the three-word exception
frame was pushed on the stack.

The exception frame consists of three words: first
word stores the old value of the exception_frame
variable, second word stores the old value of W14
(hardware local variable stack frame), and third word
stores the program memory address of the exception
handler.

TRY creates one of these exception frames. It
pops the caller’s return address, builds the frame on
the stack, and then does a goto to the return address,
so that the exception frame will be left on the stack
in the caller’s context.

TRIED marks the end of the exception frame’s
life. It restores the values of W14 and the excep-
tion_frame variable that were stored in the current
exception frame, doing the same pop/goto routine
as in TRY to access the stack underneath the return
address passed by the caller.

THROW redirects flow to the exception handler,
blowing out of any intermediate subroutine calls and
W14 stack frames that may have come into exis-
tence between the TRY and the THROW. It restores
the stack pointer W15 to the value stored in excep-
tion_frame, restores W14 and the next outer excep-
tion frame, then branches to the exception handler.
The last three instructions of THROW coincide with
those of TRIED and so are shared.

Linked lists
These three subroutines are designed to handle single-
linked lists in data memory, where the first field of
each list element is a pointer to the next element and
the last element’s “next” pointer is null, defined to
be 0x0000. The list operations are performed under
disi interrupt-disable, so that it will be safe to use
them for updating data structures read by ISRs.

An earlier design for the USB driver used such
lists extensively. These routines were originally writ-
ten for that version. The design has subsequently
been simplified, to the point that the “insert” and
“remove” operations are no longer used anywhere in
the current firmware; so I have commented those two
subroutines out, to keep them available for possible
future use without having them consume space. The
“append” subroutine is still used in one place; and be-
cause its entry point in the middle of the loop would
make inlining it difficult, I do not think there is any-
thing to be gained by inlining it instead of keeping it
as a separate subroutine.

LL_APPEND_ATOMIC appends two single-
linked lists. Call it with W0 pointing at the item(s)
to add and W1 pointing at a pointer to the head of
the list. The subroutine traverses the W1 list to find
the terminating null and replaces it with the value
of W0. So W0 should be a properly-terminated list
([W0]=0x0000 if it is a single item). Requiring W1
to be pointer to pointer is to allow for appending to
a currently-empty list.

LL_INSERT_ATOMIC (currently com-
mented out) requires the same inputs as
LL_APPEND_ATOMIC, but inserts the new
element pointed to by W0 before the start of
the list pointed to by W1. The insert operation
assumes inserting exactly one element, and the new
element’s next pointer is overwritten, thus need not
be initialized first.

LL_REMOVE_ATOMIC (currently commented
out) removes the element pointed to by W0, from
the list where W1 points to a pointer to the head of
the list. It traverses the list to find the W0 element
and then removes that element. Calling it on a list

43

that does not in fact contain the specified element, is
unsafe.

Pseudo-random number generator
This section implements a stirred entropy pool, simi-
lar in nature to operating system drivers like Linux’s
/dev/urandom, although much smaller. This PRNG
is not rated for cryptographic use. The USB Mass
Storage driver uses the PRNG to generate “tag” val-
ues exchanged with the device to make sure responses
match commands, and the MIDI backend uses the
PRNG for random arpeggiation. This PRNG is prob-
ably way over-engineered for these applications; I just
thought it would be fun to implement one using the
PIC24’s built-in CRC32 and bit-counting features, in
very few code bytes. The unpredictability of this
PRNG’s output is certainly more than good enough
for rock’n’roll.

The PRNG uses, and occupies, the hardware
CRC32 peripheral. Call START_CRC to set that up
with the proper polynomial and other options before
calling PRNG subroutines, and be aware that PRNG
calls will alter the state of the CRC32 hardware, so
they cannot be mixed with other uses of the CRC32
hardware.

Code that will use this facility should call
PRNG_HASH_TIMERS occasionally, at times that
are not completely predictable. After interrupt waits
would make sense, because those are at least some-
times determined by unpredictable external condi-
tions. The PRNG_HASH_TIMERS call looks at the
current count values of Timers 3, 4, and 5. Timer 3,
at least, is always counting at 2 MHz, so any un-
certainty on the scale of a microsecond in the tim-
ing of the PRNG_HASH_TIMERS call will create
uncertainty in the count value. A 16-bit word con-
structed from the timer values using xor gets hashed
into the CRC32 peripheral on each call. Part of the
design goal is that PRNG_HASH_TIMERS (called
frequently and unconditionally) should be a relatively
lightweight operation. The more expensive process-
ing is reserved for calls to extract random bits, which
are less frequent and may be conditional on user re-
quests.

In addition to the 32 bits of state in the CRC32
hardware’s shift register, the PRNG keeps eight
words in the prng_pool variable for an additional
128 bits of state. On a request for random bits,
the three nested subroutines prng_stir8, prng_stir4,
and prng_stir execute to mix bits from the CRC32
hardware with the bits in prng_pool. The basic stir-

ring operation consists of adding words, using ff1l to
count zeros at the left of words, and permuting bits
with rrnc and swap. These operations are selected
to be reasonably balanced with respect to 1s and 0s
(so that uniformly distributed words, once stirred,
will still be uniformly distributed), but to also have a
little bit of nonlinearity, and good avalanche among
different bit positions. The nested calls repeat the
stirring between the CRC32 hardware and each word
of the pool, enough times that any uncertainty in the
CRC value should affect all bits of the pool.

Random bits can be requested with
PRNG_READ_WORD, which does the stir-
ring operation and then takes a 16-bit value from
the CRC32 hardware. The value is returned in W0
and is expected to be uniformly distributed over all
possible 16-bit values. This call trashes W2.

The PRNG_READ_INT subroutine is a wrapper
that limits PRNG_READ_WORD to a selectable
range, from 0 to the value of W1 inclusive. It works
by calling PRNG_READ_WORD once, cutting off
high bits if necessary to make the return value the
same number of bits as W1, and then if the result
is out of range, it runs the CRC32 hardware further
until it gets a result that is in range.

44

Calibration (calibration.s)
The components used to build the Gracious Host
module have limited accuracy. When an input volt-
age comes in, it passes through an operational am-
plifier which applies a gain determined by the ratio
of two 1% resistors, and may also have an offset of
a few millivolts. Then it gets converted to digital by
an ADC which may not be perfectly linear. So two
built modules given the same input voltage may read
different raw ADC values. Similarly, there are varia-
tions in the DAC chips and the amplifiers after them,
so that sending the same number to the DACs may
produce different voltages on different modules.

In order to make input and output voltages as ac-
curate as possible, each module needs to be individu-
ally calibrated with a set of numbers representing how
to translate between raw ADC and DAC numbers,
and accurate external voltages, taking into account
the specific variations of that individual module. The
code in calibration.s handles both the automated pro-
cess for finding a module’s calibration numbers, and
the API that applies them during normal operation
so that other code in the firmware can deal in voltages
instead of raw ADC and DAC numbers.

Calibrating the Gracious Host to send and receive
accurate voltages requires the use of some kind of
external voltage reference, and the standard calibra-
tion process uses a Eurorack 1V/octave oscillator for
that. The concept is that if the code in calibration.s
sends two voltages that differ by exactly 1V, then the
oscillator should produce two frequencies that differ
by exactly one octave, that is, a factor of two in fre-
quency. The Gracious Host has the ability to measure
frequencies accurately with its many on-chip timers
and accurate external clock reference, so by measur-
ing the effect on frequency of an assumed-good exter-
nal 1V/octave oscillator, it can get at voltages indi-
rectly. Once the output voltages are calibrated, then
the user is expected to patch the output jacks to the
input jacks, and the input voltages can be calibrated
using the known output voltages.

Details of the calibration procedure from the
user’s point of view are in the UBM. Note that al-
though this depends on the accuracy of the external

oscillator, and not all oscillators are necessarily good,
that can be an advantage. The calibration is actually
to frequency rather than voltage. If the Gracious Host
is calibrated using an oscillator that does not track
accurately, tuned the way it normally will be tuned
in actual use (such as 0V = MIDI note 36), then
the Gracious Host’s voltages will end up distorted in
exactly the way needed to make the oscillator tune
accurately. Instead of sending 2.0V for MIDI note
60, it will send whatever voltage is needed to make
the oscillator actually play MIDI note 60. This effect
depends on keeping the same oscillator and tuning
for calibration and general use, but many users will
be doing that in practice anyway.

The calibration page
One page (512 instructions, 1536 bytes) of the mi-
crocontroller’s flash program memory is reserved for
the calibration data. Pages like this are the minimum
unit of erasing the flash memory. As a primitive form
of wear levelling, Perl code embedded in the firmware
Makefile chooses a random page not too close to the
top or bottom of memory and writes the file rnd-
page.inc, which contains the symbol __rndpage de-
fined as the top eight bits of the page address. The
.section directive for the calibration data then orders
the linker to put it at the specified address. Firmware
images assembled on different occasions will put the
calibration data in different locations.

The calibration page is divided into eight rows of
64 instructions each, which are the minimum unit of
rewriting the flash memory if single-instruction writes
are not being used. In order to economize on erase
operations, when calibration completes it will write
the result into the first empty row, erasing the page
if there is no empty row. Then the module looks
at the last non-empty row for the current calibration
data; so in the long term, with many calibrations and
no firmware update, there will be only one erase per
eight calibrations.

Firmware update rewrites the entire calibration
page with eight copies of the default calibration data,
so the first calibration after the update (normally

45

done as part of the update process) is forced to erase
the page. That may be unnecessarily fussy, but Mi-
crochip recommends against writing again without
erasing to a location that has already been written,
even if it was written with the freshly-erased value
0xFFFFFF. Forcing the second erase after update
prevents the module writing again to the calibration
page after the update process (which works an en-
tire page at a time) has written the entire calibration
page.

The format for the calibration data is as described
in the source file. Only the low 16 bits of each in-
struction word are used. The output calibration data
comes first and consists of the values to send to DAC
channel 1 (left) for output voltages of 0.0V, 0.5V,
1.0V, . . . , 5.0V, and a sentinel value of 0xFFFF,
twelve words in all. Then there are twelve more words
giving similar values for DAC channel 2. Next come
the input calibration values for input channel 1, which
are the numbers expected from the ADC for input
voltages of 0.0V, 0.5V, 1.0V, . . . , 5.0V, and a sentinel
value of zero, twelve words in all; and finally twelve
more words giving similar values for input channel 2.
Input calibration values are greater for lower volt-
ages because the inputs are processed by inverting
amplifiers between the input jacks and the microcon-
troller’s ADC pins. The remaining words of the row
after the calibration data are filled with 0xFFFFFF.

The output calibration values need to be strictly
increasing, and the input calibration values need to
be strictly decreasing, in order to prevent sign and
division by zero problems in the interpolations that
use these values. That is, the value for 0.0V out-
put must be less than the value for 0.5V output, not
equal or greater, and so on. The calibration routines
that generate these values are designed to force this
property.

The default calibration data given in the source
code represents the values that would be right if all
components were perfectly on their nominal values,
the ADCs and DACs were perfectly linear, and so
on. These values should cause the module to basically
work, so that a builder who puts one together without
calibrating it will at least be able to check that there
were no major build errors. Accurate musical tuning,
however, does require running the calibration process.

API for the calibration data
The global symbols OUTPUT_CAL1, OUT-
PUT_CAL2, INPUT_CAL1, and INPUT_CAL2
are copies in RAM of the current calibration data.

The code also defines global variables in RAM named
CM3_EDGE_TIME and CM1_EDGE_TIME,
which are written by the comparator ISR to repre-
sent the times when recent edges occurred on the
digital input jacks, so that other code can have
access to this information should it wish to share the
calibration routine’s ISR.

CALIBRATION_TO_RAM is expected to be
called during the boot process. It searches for the
last non-empty row in the calibration page, recogniz-
ing it by the fact that empty rows will have 0xFFFF
in the first word of calibration data where non-empty
rows specify the 0.0V output value for DAC 1. The
current calibration procedure always makes the 0.0V
output value zero, and in any case, only values in
the range 0x0000 to 0x0FFF can be sent to the DAC.
Once it finds a non-empty row, the code copies all the
calibration data from that row to the RAM variables,
and returns.

ADC1_TO_NOTENUM and
ADC2_TO_NOTENUM are two entry points
to basically the same subroutine that applies the
input calibration data to raw numbers from the
ADCs, translating them into semitone-and-fraction
representation with the MIDI note in the high byte.
This subroutine starts with a linear search to find
the first entry in the appropriate input calibration
table to be less than or equal to the input value from
W0. Such an entry necessarily exists because of the
sentinel zero at the end. It technically finds the first
such entry at or after the second entry of the table,
guaranteeing that W2 and W2-2 will both be validly
within the table.

The two entries [W2-2] and [W2] describe two cal-
ibrated notes half an octave apart, with associated
ADC readings bracketing the input reading, at least
for inputs in the range from 0V to 5V that we intend
to support. Voltages outside that range will end up
using the entries at one or the other end of the ta-
ble, probably giving less accurate results. The two
selected table entries are used for linear interpola-
tion: input value minus [W2], divided by the differ-
ence between [W2-2] and [W2], gives a fraction that
says where the input is within the half-octave. From
there it is easy to calculate the note number, with
fractional part, for the input reading. Division by
zero will crash the microcontroller (math error trap)
but should be impossible if the calibration data obeys
the requirement of being strictly decreasing.

NOTENUM_TO_DAC1 and
NOTENUM_TO_DAC2 go in the other direc-

46

tion, taking a note number and fraction in W0 and
sending it to one DAC or the other. These are simple
wrappers that call notenum_to_dacnum, described
below, to translate the note numbers into the raw
numbers to send to the DACs, then fall through
into the WRITE_DAC1 and WRITE_DAC2 entry
points, which format the appropriate messages to
the DACs and send them through the SPI port.
WRITE_DAC1 and WRITE_DAC2 serve as APIs
for code that may want to write a raw number to the
DAC without calibrated translation. For instance,
the MIDI drum trigger mode sends 0x0FFF as a raw
value to get the maximum voltage out of the DACs
without translating it from a note number.

The notenum_to_dacnum subroutine does inter-
polation on the output calibration tables. It starts
with special-case code to recognize notes less than
note 42, all of which map into the first table entry
pair, and notes greater than or equal to note 90, all
of which map into the last table entry pair. Other-
wise it must divide by 0x0600 (representing half an
octave) to find the appropriate pair of consecutive ta-
ble entries. In each of these cases it computes a signed
number in W1 representing the fractional part of the
half-octave; that is the remainder from division and
therefore in the range 0 to 0x05FF for the table en-
tries where we actually did a division, but it could be
out of that range for the extreme pairs if the original
note number was outside the range covered by the
table.

Either way, the selected pair of consecutive table
entries describes two calibrated notes half an octave
apart that bracket, or come close to bracketing, the
input note. The fraction in W1 is multiplied by the
difference between successive table entries and then
divided by 0x0600 (for the half-octave size of the in-
terval) to describe the adjustment for the input note’s
position within the half-octave, and applying that ad-
justment to the lower table entry of the pair gives the
DAC value for the input note.

Cooperative dual threading
The left and right sides are basically independent;
each can be at any point in the calibration process re-
gardless of where the other one is. In order to make
that work, they are written using very simple mul-
tithreading, supported by reserved registers and the
yield and idle_and_yield subroutines.

Here are the rules followed by the multithreaded
code.

• Either thread may use W0 and W1; these reg-

isters are not preserved across a thread switch.
• Thread 1 (corresponding to the left-side cali-

bration) may use W2–W7. These registers are
expected to be preserved across a thread switch,
and thread 2 (corresponding to the right-side
calibration) is expected not to touch them.

• Conversely, registers W8–W13 are reserved for
thread 2, expected to be preserved across a
thread switch, and thread 1 is expected not to
touch them.

• W14 is used to store the other thread’s program
counter while one thread is executing. This
conflicts with its use for lnk/ulnk and neither
thread should use those unless the thread re-
stores W14 before the next thread switch.

• W15 is the stack pointer. There is only one
stack and thread 2, although it is free to call
subroutines that return without yielding, must
preserve W15 from one yield to the next.

The yield subroutine switches between threads.
It basically just returns, but it returns into the other
thread, which is assumed to also have called yield at
some point in the past, instead of returning into the
thread that called it. So with two threads each call-
ing yield frequently, execution will switch between
the two at each call. It is implemented by popping
the caller’s return address, swapping it with W14,
and then doing a goto to the other thread’s return
address that was just swapped. The idle_and_yield
subroutine, intended to be called only from thread 1,
is meant to handle waiting for something (like an in-
terrupt) to happen. It does a pwrsav #1 with a yield
before and after it.

Switching into the dual-thread execution state is
handled in what will become thread 1, just by writ-
ing the starting address for thread 2 into W14. Then
the first yield call will start running thread 2. At
the end of the calibration process, thread 2 goes into
an infinite loop calling yield. Thread 1, when it also
completes, loops calling idle_and_yield and watches
the value of W14. When W14 is equal to the ad-
dress of the instruction after thread 2’s final yield
call, it knows thread 2 is complete. Then thread 1
simply does not call yield anymore, and continues on
as the single thread of execution. In all, this is ba-
sically the smallest multithreading kernel that could
possibly work; but it does work well in the intended
application.

Microchip’s debugger does not work well on the
multithreaded code. It seems to be confused by
subroutine calls with rcall that do not return with

47

return – like the calls to yield, which end with
goto instructions into the other thread. So in or-
der to make debugging easier, the code includes con-
ditional assembly directives keyed to the SEQUEN-
TIAL_CALIBRATION configuration symbol that
can be defined in config.inc. Define this symbol to dis-
able multithreading. Then idle_and_yield and yield
are redefined to just do pwrsav #1 and return to the
caller, so thread 1 will run first in its entirety with-
out switching to thread 2, and then a call is added
to make thread 1 call thread 2 as a subroutine when
it completes. The waiting loops at the ends of both
threads are removed. The result is that all the cali-
bration on the left has to be done before any of the
calibration on the right, but the control flow is much
easier to follow in the debugger.

Output calibration
The entire calibration process starts at the global
symbol CALIBRATION_PROCEDURE, which sets
up the hardware for the settings used in calibration
mode. It calls STANDARD_IO_CONFIG to get
most of the timers and GPIO into a known state,
and USB_DONE to make sure the USB peripheral is
shut down. It also does a general enable of interrupts,
setting the CPU interrupt level in the SR register,
because this code is expected to normally be called
after a firmware update, which would have run with
SR set up to disable all interrupts that can be dis-
abled. Then it calls LEDBLINK_INIT, turns on the
comparator interrupt, and sets W14 to point at the
start of the right-side output calibration (thread 2).
From this point onward, execution is dual-threaded.

The calibration processes for thread 1 and
thread 2 are basically the same code, just written to
use different register numbers and variable locations,
to talk to the appropriate sides of the hardware, and
with idle_and_yield in thread 1 where thread 2 uses
plain yield. I will only describe thread 1 in detail.
Note that if you change the calibration code for one
side you will probably want to carefully make the
same changes on the other side to keep them working
the same way. They are just different enough that it
did not make sense to try to write the code just once
and have it take a parameter saying which side to do.

In output calibration it is assumed that the analog
output is patched into the V/oct input of a modular
VCO. The VCO’s output is patched into the Gracious
Host’s digital input. The loop starts by sending a zero
to the DAC, giving a control voltage as near zero as
the hardware will allow, and measures the frequency

(actually period) that the VCO is producing.
From there it is possible to compute the period

for each half-volt interval from 0.5V up to 5.0V:
the frequency doubles, and the period halves, for
each volt, and the frequency is multiplied, period di-
vided, by

√
2 for each half volt. Math geeks may

note that we will actually use the approximation√
2 ≈ 47321/33461, which is the best approximation

of
√
2 for which the numerator and denominator fit in

16-bit unsigned integers. (See OEIS sequence number
A001333.)

For each half-volt step, the loop sends the current
calibration value, which represents the current best
guess at what DAC number will result in the specified
voltage, to the DAC and measures the resulting VCO
period. The measured period is compared against
the calculated target period, and based on that, the
calibration value for the voltage step may be adjusted
up or down.

After trying all the voltage steps from 0.5V up
to 5.0V, the loop evaluates how many adjustments it
had to make. When no more adjustments are needed,
output calibration is finished. If there were adjust-
ments, it loops again, starting with another reading
of the oscillator period at 0V, to accommodate oscil-
lators that may drift a little over time.

That is the basic outline. Now, some more details.
Depending on the voltage step, the output cali-

bration switches between configuring Timer 4 to 1:8
prescaler mode, which gives it a maximum timing pe-
riod of 32.77 ms corresponding to 30.52 Hz; and 1:1
prescaler mode, which gives it a maximum period of
4.10 ms corresponding to 244.14 Hz. It uses the slower
mode for voltages up to 2.5V and the faster mode for
higher voltages. That way it can get a long enough
timing period to measure the entire cycle of the slower
frequencies, while still getting enhanced resolution at
the higher frequencies.

There are a lot of consistency checks applied to
the input timing data; basically, each period mea-
surement is accepted only if several consecutive pe-
riods fall within a small interval. That is important
especially at the start for recognizing that the user
has actually connected an oscillator to the module at
all, because we cannot do good calibration without
one. When a voltage step produces inconsistent re-
sults, its calibration does not get adjusted but it is
counted as a “bad note” instead, and the loop will
not terminate until it gets through with not only no
adjustments, but no bad notes.

It is expected that the last few loops will be just

48

fine-tuning the calibration values, pushing them up
or down one count at a time; but in order to get
in the general range quickly, the first few loops run
with a larger step size, starting from adjustments of
256 counts. Whenever a loop completes with no bad
notes, the current step size gets multiplied by 3/4,
rounded down, with a hard limit forcing it to stay at
least 1.

Output calibration starts by sanitizing the exist-
ing calibration data at OUTPUT_CAL1: a loop en-
sures that the first value is zero, the last value is
0xFFFF, and all values in between are 12-bit values
(top four bits forced to zero). It is not terribly criti-
cal that the initial values are good, because they will
all be adjusted anyway, but this step makes sure that
they are at least valid for sending to the DAC.

From label wait_for_oscillator_1, the code looks
for plausible results from the attached VCO. It sets
the LED on this side to a slow red blink by setting the
global variables for the LED blinker code. It sends a
zero to DAC 1, and configures the Timer 4 prescaler
to 1:8. Then it loops waiting for two reasonable-
looking sets of timestamps in a row.

There is a macro defined here called wait_ticks,
which loops on idle_and_yield until SI_BLINK1 in
SOFT_INT_FLAGS has been set a specified number
of times. The SI_BLINK1 flag gets set once every
65.536 ms by the LED blinker driver. This macro is
used throughout the thread 1 calibration code; then
redefined, to look at SI_BLINK2 and use plain yield
instead, for the thread 2 code.

To find a reasonable-looking set of timestamps, the
code does four iterations of clearing the SI_CM3 flag
(comparator 3 serves the left side of the module),
waiting while calling idle_and_yield for the ISR to
set that flag, and then capturing the timestamp that
the ISR wrote to SM3_EDGE_TIME into a work-
ing register. It collects four consecutive timestamps,
representing three periods of the external oscillator,
into W4–W7. Then it computes the times of those
three periods by subtracting successive timestamps,
into W5–W7.

In order to say that the timestamps correspond
to a measurement we can use, we want all three
periods to be in the range 7201 to 65408. These
numbers correspond to frequencies that, even if ad-
justed in either direction by a factor of 513/512,
will still be measurable with our timer settings and
will correspond to halfway reasonable frequencies for
MIDI note number 36, which we map to 0V. The
accepted range is slightly wider than one octave be-

low and two octaves above standard MIDI concert
pitch. So the code checks the periods against those
constants and if any are out of range, it goes back to
wait_for_oscillator_1, waiting for the user to attach
a reasonable oscillator and tune it appropriately.

When there really is no oscillator attached at the
start of the loop, the most likely sequence of events
is that the code will just wait a long time for the
comparator edges, then get a few edges at random
times a few milliseconds apart from contact bounce
as the user patches in the oscillator.

The next set of checks compares successive pairs
of periods (W5 against W6 and W6 against W7) to
make sure they do not differ by more than OUT-
PUT_CAL_FUZZ, a configuration setting from con-
fig.inc. The default is 20, corresponding to ±10µs.
If differences larger than that are detected, it again
goes back to wait_for_oscillator_1.

When the loop, twice, detects three consecutive
periods that are in range and within the fuzz tol-
erance, that means a working VCO has been con-
nected. The waiting loop terminates. It calls calcu-
late_targets, described under “support routines” be-
low, to compute target period values that it should
aim for on each of the other output voltages from 0.5V
to 5.0V. These are basically just half-octave steps
from the 0.0V period we just measured, but with a
three-octave correction applied to the higher notes
that will be measured with the 1:1 prescaler instead of
the 1:8 prescaler. The target periods, with acceptable
tolerance bands around them, go into the common-
data RAM variables target_period1, low_period1,
and high_period1, which are arrays of values for
the different half-octave steps. W2 gets initialized
at this point to 256 as the initial adjustment step
size, and the output calibration as such starts at out-
put_allnotes_loop_1.

The outer output calibration loop initializes some
internal RAM variables: bad_notes1 to zero, re-
tuned_notes1 to zero, and current_note1, which is
the loop counter for the inner loop, to 2. The cur-
rent_note1 variable is a byte offset into the calibra-
tion data, and starts at 2 to represent the first note
we may actually retune, skipping the fixed zero at
offset zero.

The outer loop handles repeating the adjustments
until all notes are acceptably tuned, with as many in-
vocations of the inner loop as necessary. The inner
loop, which starts at output_note_loop_1, makes
one adjustment attempt for each note. It extracts the
current calibration value for the current note, sends

49

it to the DAC, and sets the T4 prescaler according
to which note we are looking at (1:8 for notes num-
bered 0 to 5, 1:1 for higher notes). It uses wait_ticks
to wait about a third of a second for the VCO to
stabilize. Then, much as in the waiting for oscilla-
tor stage, it waits for four consecutive time stamps,
computes three consecutive periods from those, and
checks whether they agree to within the fuzz toler-
ance. If not, this note is counted as a “bad note” and
the loop proceeds to the next note.

If the periods are consistent, they get checked
against the corresponding entries in low_period1 and
high_period1, to check whether the calibration value
for the current note should be adjusted downward
(lower frequency, longer period, hit if the current pe-
riod is shorter than desired) or upward (higher fre-
quency, shorter period, hit if the current period is
longer than desired). There are additional checks
to make sure that the current note is not set to a
lower value than the previous note or a higher value
than the next; these are always defined because of
the forced zero at the start of the array and 0xFFFF
at the end. Finally, the new values are ANDed with
0x0FFF to ensure they remain in range for the 12-bit
DAC.

The adjustment, if made, is by the amount in W2
in either direction; and if an adjustment was made,
then the retuned_notes1 counter is incremented.

After all notes have possibly been adjusted, there
is a second measurement of the note at 0V to make
sure the oscillator has not drifted too much. The code
sends 0V to the DAC, waits about a third of a second,
collects four timestamps, and computes three periods,
much like before. These get tested for consistency us-
ing OUTPUT_CAL_FUZZ, and then tested against
the tolerance limits in low_period1 and high_period1
for note zero. Although we never actually change the
calibration value for note zero, the concept here is to
ask whether we would want to change it, in order to
match the period for the note at 0V that we already
measured at the top of the loop. If we would, or if the
consistency check failed, then it means the oscillator
is misbehaving enough it should not be trusted for
calibration, and the code branches all the way back
to wait_for_oscillator_1 to start over. This code
path might be taken, for instance, if the user starts
messing with the tuning knob while calibration is in
progress.

Assuming the oscillator passes that test, the final
logic in the loop handles the counts of bad notes and
retuned notes. The LED blink pattern gets adjusted,

using some bit-twiddling; the mask of zeroes in LED-
BLINK_TRIS7, representing how many of the 16
time periods in the pattern the LED should be lit,
is set to cover two bits plus one for each bad note
and one for each retuned note. The flashes will tend
to be long at the start when many notes are being
adjusted and then will get shorter.

If there are no bad notes, then the step size for the
adjustments gets reduced to 3/4 of its current value,
allowing finer adjustments on future loops. Using the
bad note count as the criterion for reducing the step
size may seem arbitrary but seems to work well in
practice; it is normally expected that the bad note
count will stay at zero once the oscillator is stably
hooked up, and the step size will shrink on every it-
eration until it hits 1, where (because of special-case
code preventing step size from going to zero) it will
stay. The factor of 3/4 was chosen by experiment; it
is not terribly critical, but using too high or too low
a factor is likely to make the calibration require more
iterations to converge on the final values.

The outer calibration loop repeats until there are
no bad notes and no retuned notes, at which point
all the output calibration values are considered good
enough.

Input calibration
Input calibration starts as soon as output calibration
finishes. This too is dual-threaded code, repeated
twice in the source file for the left and right sides,
with the appropriate changes. I describe only one
thread here. It begins by changing the LED blinker
variables to switch to an alternating red and green
blink at twice the earlier rate (about two blinks per
second).

The general outline of input calibration is similar
to that of output calibration: it loops through the
voltage steps, trying to get a good reading for each
of them, representing what the ADC reports when it
sees that input voltage, and the loop finishes when
the readings all seem good. The process is a little
simpler than for output calibration, however, because
for this stage the user is expected to patch the ana-
log output which was just calibrated to the analog
input without an oscillator in between, and the mod-
ule only needs to get a single consistent reading on
each voltage, without doing a search up and down to
find the calibration value.

The outer loop, which does as many at-
tempts of all notes as necessary, starts at in-
put_allnotes_loop_1. It clears the bad notes counter

50

and the loop counter for the inner loop, then starts
the inner loop, which does one attempt for each note.

For each note in the inner loop, the code sends the
current output calibration value to the DAC. From
the just-completed output calibration, it is assumed
that that will make the DAC produce the correct volt-
age for this note at the output jack. Then the ADC
reading, through the patch between output and in-
put, should be the correct input calibration value for
the note.

Before reading the ADC, there is a two-tick
(roughly 130 ms) delay to make sure everything sta-
bilizes. Especially when running on a low-quality
power system, there may be some significant noise
in the ADC reading, so for more accurate results,
a third-level loop runs to take 16 ADC measure-
ments. Each consists of waiting for the SI_ADC1 flag
in SOFT_INT_FLAGS, indicating that the ADC
ISR has collected a new measurement (sampling rate
1.618 kHz), and then getting the value from IN-
PUT_ADC1. The third-level loop accumulates the
minimum, maximum, and sum of the 16 measure-
ments. It immediately aborts (counting this as a “bad
note”) if the difference between minimum and maxi-
mum exceeds the INPUT_CAL_FUZZ configuration
setting from config.inc, which defaults to 6 counts,
approximately 38 mV. That is a generous tolerance;
real hardware is not expected to produce such a wide
range of readings for a fixed input voltage, but I want
people to still be able to calibrate their modules to
the precision that remains possible, even on a very
noisy power system. The averaging over 16 measure-
ments means the calibration value should be at least
halfway decent even when there is a lot of noise from
one sample to the next.

Assuming no abort, the code divides the total of
the measurements by 16 to get the mean or average.
That is the tentative new calibration value for the
note. There is a check that each calibration value,
other than the 0V value, is strictly less than the cali-
bration value for the next lower voltage, recalling that
because of the inverting input amplifier, higher volt-
ages give lower ADC readings. Further special-case
checks require that the calibration value for 0V is at
least 754 (which would be the nominal reading for
about 1.5V input) and the calibration value for 5V
is at most 441 (which would be the nominal reading
for about 3.5V). The checks on the 0V and 5V values
primarily serve as verification that the patch cable re-
ally is plugged in. When the module is still connected
to the VCO from the previous step, or when there is

no cable patched, in the time between disconnecting
the VCO and connecting the direct patch cable, these
checks will fail and the calibration will wait. If any of
these checks fail, the note is counted as a bad note.
Otherwise, the mean measurement becomes the new
calibration value for the note.

After the inner loop has attempted all the notes,
there is some bit twiddling in the outer loop to com-
pute a new blink pattern for the LED. It is substan-
tially the same concept as used for the output cali-
bration, but it turns the LEDBLINK_TRIS7 bits on
in the order 0, 8, 1, 9, 2, 10, . . . so that the red and
green blinks will scale proportionally to each other.
Since input calibration usually completes after only
one or two loops, there is not much chance for the
user to actually see these shortened blinks anyway.

Input calibration ends when the inner loop fin-
ishes with no bad notes. At that point the thread
runs a final sanitization on the input calibration val-
ues (forcing them to fit in 10 bits and adding the zero
sentinel at the end); sets the LED to fast green blink
(about four per second); and enters the loop to “join”
with the other thread.

After both threads are complete the former
thread 1, now the single execution path, turns
off the comparator interrupt, calls CALIBRA-
TION_TO_FLASH to burn the final result to to
calibration page of program memory, turns off the
LED blinker driver, and then branches to SUC-
CESS_TUNE from loader.s, which notifies the user
that the calibration process is complete and eventu-
ally results in a reboot of the module.

Support routines
The yield and idle_and_yield subroutines implement
the calibration’s dual-threading and are described
above.

The calculate_targets subroutine finds the tar-
get period values for use during output calibration.
It is called from both threads, which means that it
must not yield (to preserve the stack pointer) and it
must preserve all the working registers except W0 and
W1. It assumes that W1 on entry points to the array
of target periods (target_period1 or target_period2)
with the period for note 0 already filled in by the
caller.

The period value for note 0 (0V output) gets
copied directly to note 6 (3V) because of the prescaler
change between notes 0–5 and 6–10. Then the
integer-volt notes are filled in: period from note 0
divided by two (shifted right one bit) to get the pe-

51

riod for notes 2 and 8, and then divided by two again
for notes 4 and 10.

For the half-integer voltages (0.5V, 1.5V, and
so on) we need to divide by

√
2, which is the fre-

quency or period ratio for an equally tempered tri-
tone, exactly half an octave. Division by this ir-
rational number is implemented using the rational
approximation

√
2 ≈ 47321/33461: the period for

note 0 is multiplied by 33461 and divided by 47321
using the PIC24’s 16×16→32-bit multiplication and
32÷16→16-bit division. The result of that calcula-
tion is the period value for note 1, copied to note 7 be-
cause of the prescaler change, then halved for notes 3
and 9 and halved again for note 5.

For each note there is a tolerance band of plus or
minus 1/512 of the target period, which corresponds
to an estimate of how precisely it is realistically pos-
sible for the Gracious Host to control the frequency
of an external oscillator given the capabilities of its
output DAC. This is about ±3.4¢ of musical pitch. A
final loop runs over the target_period array to com-
pute lower and upper bounds with this tolerance and
write them into the low_period and high_period ar-
rays, which are the ones actually read by the output
calibration. Then calculate_targets returns.

The CALIBRATION_TO_FLASH subroutine is
global, to support the possibility of some other code
changing and wanting to rewrite the calibration data.
It starts by checking whether the last row of the cal-
ibration page is empty, recognized by 0xFFFF in the
first word of that row. If so, then at least one empty
row exists. If not, then it erases the calibration page
by setting the flash SFRs for a page erase and calling
PERFORM_FLASH_OPERATION from loader.s
to do the erase, after which all rows will be empty.

After at least one empty row is known to exist,
it searches to find the first empty row, which will be
the destination of the write. It sets up the flash SFRs
for a row write, copies the RAM calibration data
to the “program latches” used by the flash-writing
hardware, and then ends with a tail call to PER-
FORM_FLASH_OPERATION.

Comparator ISR
The source file ends with the ISR for the comparator
interrupt, whose main function is to save the times-
tamps from Timers 4 and 5 for the foreground to pick
up and use in measuring frequencies during output
calibration.

For consistent timing, the ISR grabs the timer val-
ues into W0 and W1 immediately after saving those

registers on the stack, before acknowledging the inter-
rupt or doing any conditionals to determine whether
it actually needs to save the timestamps. That way
the delay between the comparator edge and the times-
tamp collection is minimized, and more importantly,
is as consistent from one edge to the next as possi-
ble. This interrupt runs at priority level 6, taking
precedence over any of the other interrupts enabled
by the firmware (most of which are disabled during
calibration anyway), so its timing should not be af-
fected by other things going on with other parts of
the hardware.

In hardware testing I discovered that the ISR
would sometimes run on both edges of an input pulse
even though the comparator peripheral is configured
to request an interrupt only on the rising edge. There
is a published erratum for the chip saying that the
comparator may sometimes fail to signal an inter-
rupt requested by its configuration, depending on the
configuration of the internal bandgap reference, but
we are not using one of the bandgap reference con-
figurations mentioned in the erratum, and the erra-
tum makes no mention of the comparator possibly
signalling extra interrupts. My guess is that instead
of being an undocumented silicon erratum, the extra
interrupts are coming from high-frequency noise on
the input, which could possibly cause the voltage to
go back and forth a couple of times across the com-
parator threshold in the space of a microsecond or so
during a relatively slow falling edge, bearing in mind
that these comparators are designed to be able to
trigger much faster than the low audio frequencies at
which we are using them.

In order to guard against spurious interrupts on
the falling edge, the ISR first checks the CEVT SFR
for whether the hardware has reported a comparator
event (rising edge) for comparator 3 corresponding to
the left channel, and then it checks the comparator’s
output bit in COUT. The output bit check occurs
on the order of a microsecond after the interrupt was
triggered. If it was really a rising edge, then the out-
put should be high when checked; if the output is
low at the check, then the event is assumed to have
been a falling edge, and is ignored. If a valid ris-
ing edge is detected, then the SI_CM3 bit gets set
in SOFT_INT_FLAGS, and the already-captured
Timer 4 value is saved to CM3_EDGE_TIME.

The same logic repeats for comparator 1, cor-
responding to the right channel, with the SI_CM1
bit being set and the Timer 5 timestamp written
to CM1_EDGE_TIME should a rising edge be de-

52

tected. Then the ISR and the source file end.
Note that although the front-panel input jack

voltage runs through an inverting amplifier before
reaching the microcontroller, the comparators are
also set to an inverting configuration, so a “rising
edge” as detected by either comparator corresponds
to a rising edge at the input jack.

Hardware simulation
Because the calibration process (especially output
calibration) depends on timing external events at
the scale of microseconds to milliseconds, it can be
difficult to observe in the Microchip debugger. As
well as the SEQUENTIAL_CALIBRATION option
already described, which turns off multi-threading
because that confuses the debugger, the code sup-
ports SIMULATE_CALIBRATION_OSC and SIM-
ULATE_CALIBRATION_ADC conditional assem-
bly symbols.

If SIMULATE_CALIBRATION_OSC is enabled
in config.inc, then the loops that collect timestamps
from the ISR’s recording of hardware events during
output calibration will be replaced by a few instruc-
tions that provide fake timestamps, consistent with
what would be expected from a VCO operating at
exactly the nominal frequencies. The timestamps
will allow testing the rest of the logic in the output
calibration process using single-step debugging either
in real hardware or the Microchip simulator, despite
the delays from debugging screwing up the values of
the real timestamps and despite that the simulator
does not run the comparator interrupt at all. Testing
the bad note and retuning logic will require manually
editing the register values to get non-nominal times-
tamps.

If SIMULATE_CALIBRATION_ADC is en-
abled in config.inc, then something similar is done
for the ADC measurements to allow testing input
calibration even in the software simulator, where the
ADC does not produce useful values. In this case the
simulated readings are not exactly the nominal val-
ues, but just some plausible values that are easy to
calculate. As with the oscillator simulation, simulat-
ing bad notes requires manual intervention.

53

Loader and image builder (loader.s, image.s)
This chapter describes the loader, with which the
Gracious Host can rewrite its own firmware; as well
as the file format of loadable firmware files, and how
the build system gets the firmware into that format.
Other code modules, notably the FAT driver in usb-
mass.s, are responsible for copying the firmware im-
age file into the SRAM chip; then the loader described
here does the reprogramming of the flash memory.

Firmware update process
It was a design goal for the Gracious Host that it
should be able to update its own firmware by load-
ing a file from a USB mass storage device. That
presented serious challenges for the design of the
firmware. If using Microchip’s C-language drivers for
communicating with USB mass storage and reading
files from a FAT filesystem, the code just to read
the new firmware image would fill well over half the
program memory capacity of the microcontroller. If
that code were subject to update, the obvious way
to do it would be to read the entire new firmware
into unused space in program memory while leaving
the old firmware intact, then either just switch to it
(accepting that the new firmware would have to be
at a different address from the old), or use a small
stub to move the new code to its final address, over-
writing the old firmware including the old USB and
FAT drivers. Either case requires at some point hav-
ing two entire firmware packages in program memory
at once, which is impossible if they each consume
more than half the space. Even if the “old firmware”
were stripped down to just the loader code, the loader
code itself being bigger than half the program mem-
ory poses a problem.

Another alternative might be to make the loader
code not subject to update. It would just remain fixed
for all time after initial programming of the chip,
and any new firmware that might be loaded would
be only whatever parts were not needed to run the
firmware update, safely rewritable during the update
process. That is how most commonly-available boot
loader code works, including the example USB boot
loader code for this chip provided by the Microchip

corporation. The loader does not rewrite itself. But
that approach precludes ever fixing or meaningfully
changing the loader code, which would be a large frac-
tion of all the code on the chip. It would be a major
compromise to the goal of allowing modification.

The Gracious Host uses another approach, sup-
ported by additional hardware in the shape of the
128K SRAM chip. To run a firmware update the old
firmware, including the large USB and FAT drivers,
reads the new firmware image into the SRAM, not
into program memory. Then it runs a small loader
process, whose source code is in the file loader.s. The
loader takes its instructions from the image in the
SRAM, not from the USB device; so it does not need
to run the USB and FAT drivers and can safely over-
write them. It only needs to communicate with the
SRAM chip over SPI, and the microcontroller’s built-
in flash memory hardware, each of which is a much
simpler interface than USB.

The firmware includes two copies of the loader,
which in consequence must be written with even more
care than usual to keep the code small and self-
contained. The linker puts one copy at the bottom
of memory (lowest addresses available after the in-
terrupt table) and one at the top (highest addresses
available before the special non-reprogrammable last
page). See the memory map in Figure 1.

The low copy runs first. It is expected to write
whatever parts of the new firmware go into the
top half of program memory – including the new
firmware’s high copy of the loader code. The new
loader code could concievably differ from the old
firmware’s loader code, although new firmware needs
to be aware of any potential compatibility issues here.
Then after the top half of the program memory space
has been written, the new firmware image directs the
old loader, low copy, to jump to the newly written
high copy of the new loader. That loader code contin-
ues the operation of rewriting the program memory,
filling in whatever parts of the new firmware go into
the low half of the space. At the end of the process,
the entire rewritable portion of program memory has,
at least potentially, been rewritten. All parts of the

54

0x0000

0x0200

0x0412

0x2490

0x4000

0x4400

0xA5F2

0xA800

0xAC00

interrupt table

loader low copy

firmware

calibration page

loader high copy

last page

Figure 1: Program memory map (typical; exact ad-
dresses will vary; not to scale).

old firmware, including the loader but excluding the
non-reprogrammable last page, can be replaced by
the new firmware, despite the new firmware possibly
being the entire size of program memory.

I designed this process based on the observation
that Microchip’s C code required something like 50K
of program memory space just for a minimal USB
and FAT driver. I expected that I could shrink the
USB and FAT code somewhat by replacing it with
hand-optimized assembly language, but that I would
also have to add a significant amount of code to im-
plement all the rest of the things the firmware does
beyond just reading files from a USB mass storage
device; so I could not be confident of making the en-
tire firmware less than half the 64K capacity of the
microcontroller. Being unable to fit two copies of the
firmware in program memory at once was the impetus
for adding the SRAM chip.

In the event, my efforts to keep the code small
were much more successful than expected. As of
this writing the basically complete firmware fills only
about 17K of program memory, significantly less than
half the available space. In principle, a scheme that
read the entire new firmware into unused space in
program memory and then went from there, without

needing the SRAM chip, would probably work, and
would save the cost of the additional hardware. How-
ever, the SRAM chip scheme is already implemented
and it works. Writing and debugging a completely
different loader system (as well as changing the hard-
ware design, even if only so far as just deciding not to
install the SRAM chip on the existing circuit board
layout) seems like it would be wasted effort; having
the SRAM chip available for other purposes seems
to be of some value; and allowing for possible future
firmware to use all of program memory even if the
current version uses less than half, seems valuable
too. My plan is to stick with this design even if it
seems over-engineered for the current version of the
standard firmware.

Double assembly
In order to help make sure that the low and high
copies of the loader function identically, they are
both assembled from the same source file. Rules
in the Makefile assemble the two object files loader-
lo.o and loader-hi.o from loader.s. The symbol
loader_high_copy is defined to 1 by an assembler
command-line option when assembling loader-hi.o,
for use by conditional assembly directives inside the
source file in places where the two copies need to dif-
fer.

The high copy should be located such that its text
section (the binary instructions that are the main
output of the assembler) ends with the instruction at
0xA7FE, which is the last instruction before the re-
served final page of program memory. The toolchain
supports forcing a section to start at a given address,
but not easily forcing a section to end at a given ad-
dress. (It might be possible with some trickery in the
linker script, but at the time I implemented this part,
I was trying to avoid using a custom linker script.)
So in order to make the high copy end immediately
before the final page, more code in the Makefile reads
loader-lo.o, finds the length of the text section, and
uses a Perl script named mkloaddr to write loader-
addr.inc, which contains the .section directive that
will be used for assembling the high copy to put it in
the right place.

The mkloaddr utility finds the difference between
the addresses marked by the labels loader_start and
loader_end in loader-lo.o. It also applies an adjust-
ment defined by the loader_delta label, if any. This
label can be defined in the source code if there are
any small differences between the two versions of the
loader that could affect the length. It is measured in

55

address units, two units per 24-bit instruction, and it
should be positive if the high copy is longer, negative
if the high copy is shorter.

Having two object files built from the same source
unfortunately confuses Microchip’s debugger and I
don’t have a good solution to that, but it seems to
work reasonably well as long as execution stays in
the low copy, and most debugging tasks can be ac-
complished using only the low copy.

Format of the image file
Firmware to be loaded by the module needs to be
formatted into an image file, so called because it is
an exact image of the SRAM contents at the start
of the program memory writing process. The stan-
dard name for the firmware image file is firmware.frm
(FIRMWARE.FRM in the convention of the DOS
FAT filesystem, which is case-insensitive but usually
writes filenames in all caps). The image file can be
up to 128K, the size of the SRAM, though because
there is only about 64K of program memory, it is un-
likely that an image file much larger than 64K would
be useful.

The first 256 (0x0100) bytes of the image file are
not used by the loader, but are normally expected to
be included in CRC checks. This would be a good
place to include a human-readable identification of
what the file is, a copyright notice, and so on.

Starting at offset 0x0100, the main body of the
file consists of a linked list of loader records, which are
commands to the loader. The loader starts with the
record at 0x0100 and then follows the links, executing
each command until one causes it to stop.

The first four bytes of each record are an identi-
fier of the record type (one byte, always an ASCII
uppercase alphabetic character), and then a 24-bit
pointer to the next record, as offset from the start of
the file. Record types are referred to by their identi-
fying letter, like B-records and C-records. After that
header shared by all record types, there may be other
fields defined by the particular record type, as dis-
cussed below. Note that the next-record pointer is
stored unaligned and little endian; and the high byte
of the pointer is expected to always be equal to 0
or 1 because anything else would point outside the
128K SRAM address space. Notwithstanding the ex-
ception of the 24-bit next-record pointer, other fields
in loader records of 16 bits or more, and the records
themselves, are expected to be 16-bit aligned.

Extra bytes of padding between and after loader
records is allowed, a fact used in the standard

firmware’s image generator to get around toolchain
limitations, as discussed in the section on image.s be-
low. In principle, loader records need not even be ar-
ranged in sequential order within the file; the loader
just follows the link fields to successive records wher-
ever they are.

SRAM simulation and common macros
Debugging the loader works well on real hardware
with a real SRAM chip; the SRAM is tolerant of long
gaps in the timing, as might be caused by single-
stepping the processor. Debugging the loader code in
the PIC24F simulator works less well because there
is nothing connected to the simulated SPI port; the
firmware tries to send commands to the SRAM chip
but never gets any responses. So to allow for de-
bugging in the simulator, there is support in loader.s
for building a small image file into program mem-
ory and reading that instead of the SRAM. If SIMU-
LATE_SRAM is defined in config.inc, the loader will
read SRAM data from program memory instead of
attempting to connect to the SRAM chip.

All communication with the SRAM in loader.s is
done through seven macros: assert_cs2, retract_cs2,
mov_to_spi1buf, clr_spi1buf, setm_spi1buf,
mov_b_from_spi1buf, and btst_srxmpt. When
simulation is not enabled, each of these is defined to
assemble a single instruction that interacts with a rel-
evant hardware register. When SIMULATE_SRAM
is defined, they instead implement a minimal simu-
lation of the SRAM chip’s communication protocol,
supporting only the read command. There are a
couple of static variables and support subroutines
assembled and used by these macros.

The data stored in the the simulated SRAM is
a manually-constructed image file assembled at the
label sram_data. It can of course be edited as needed
for a given debugging task, but the version in the
source code is an assortment of records intended to
test all the major features of the loader.

Loader initialization and main loop
The initialization code at LOADER_INIT, and its
support routine config_timers_for_tunes, are not
actually part of the loader proper; they do not need
to be duplicated and so are only assembled when as-
sembling the low copy, into the general-purpose .text
section (to be located anywhere in program mem-
ory) instead of into the loader_lo section that gets
located immediately after the interrupt table, at ad-
dress 0x0200.

56

The initialization sets up the hardware registers
to both enable PSV for reading the hardware ID from
the final page, and have table read and write instruc-
tions look at the first 64K of program memory (which
is all of program memory, anyway). Then it calls
config_timers_for_tunes, which configures Timers 1
and 3 and output compare 1 to the settings used by
the loader (mostly for playing the success and fail-
ure tunes, hence the name of the subroutine), as well
as PPS-mapping the output compare to both digi-
tal output jacks. This configuration is summarized
in Table 2 on page 11. The config_timers_for_tunes
routine also turns off all interrupts that can be turned
off, by hacking the processor’s SR register to raise the
processor interrupt level to 7.

Next, the initialization code turns off the front-
panel LEDs by setting TRISB bits 7 and 9. It sends
a RSTIO (reset I/O) transaction to the SRAM chip.
This transaction makes sure the SRAM chip is con-
figured for the standard one-data-line SPI protocol,
which is the default anyway, but it is a safety mea-
sure in case the chip somehow got configured for one
of the other modes (which our hardware cannot sup-
port). As usual with the SPI hardware, each byte
written must be matched by a byte read, in this case
done by a call to spi1_read_byte with the result dis-
carded.

Next it initializes the starting address in the im-
age, which is kept as 32 bits in the register pair
W3:W2. It sends a WRMR (write mode register)
transaction to the SRAM chip to set it to sequential
mode. Then it branches to LOADER_LO_ENTRY,
which is the start of the loader proper, at address
0x0200. This is the start of the main loop of the
loader; it expects that all relevant initialization is
already done and the current SRAM offset is in
W3:W2.

The main loop starts (at what is forced to be ad-
dress 0x0200) with a clrwdt instruction. Explicitly
clearing the watchdog timer is rare in the firmware
because pwrsav instructions occur frequently to wait
for interrupts, and have the side effect of clearing the
WDT; but because the loader runs with interrupts
turned off, it needs to clear the WDT explicitly at
least once per second to avoid a timeout, and once
per iteration of the main loop is more than enough.

Next, it starts a sequential READ transaction
with the SRAM, starting with the first byte of the
record, which is the record type identifier and gets
stored in the low byte of W1. The next three bytes
are the 24-bit address of the next record; these get

read into W3:W2. The code requests another byte
after reading each one, and then requests one further
byte without reading it; so that after this point there
are two bytes still expected from the SPI port. Sub-
sequent code that handles the different record types
always either reads at least two more bytes (in which
case it can be saved the trouble of requesting two of
them), or ends up resetting the module and doesn’t
care about the state of the SPI bus.

The register W4 is initialized with the address of
the start of the common data area for the convenience
of the code sections that handle the different types;
most of these will end up reading the remainder of the
loader record directly into the start of the common
area.

Then there are several sections that handle the
different record types. Each section checks whether
the already-read type identifier in W1 matches, and
branches to the next if it does not. The last one, for
F-records, actually handles all cases not covered by
the previous sections.

B-record: burn a page
The B-record tells the loader to burn (that is, erase
and rewrite) a page of flash program memory. It is
1546 bytes long, with this layout.

0
2
4
6
8

10

16 0

“B”
next

page number

CRC32

page data

The fields are defined as follows.
“B” Record type ID; ASCII character “B,” equal to

0x42.
next Address of the next record, 24-bit little endian.

Lowest bit always zero because of word align-
ment, and upper seven bits always zero because
of the 128K size of the SRAM.

page number Page number to write. This is tech-
nically the high byte of the program memory

57

address for the start of the page, which must
be aligned on a boundary of 1024 address units
or 1536 bytes. So the upper eight bits and the
lower two bits of the 16-bit value in this field,
are necessarily zero. For example, to write the
page starting at 0x1400, the page number field
contains 0x0014.

CRC32 The CRC32 value (parameters as used by
Ethernet, ZModem, and so on) of the page data.

page data The 1536 bytes that should be written to
the specified page.

The code to handle this record type starts by call-
ing spi1_finish_transaction, a support routine that
receives the bytes of the record through SPI that
were not already read by the main loop, and stores
them into the common data area. Earlier in the
source code, in the section labelled “Data memory,”
there were labels b_record_page, b_record_crc, and
b_record_data defined to ease access to the different
fields in this record.

Next, it checks the CRC32. It calls the support
routine start_crc to initialize the hardware, then runs
a loop to call crc_w0_word for each word of the
page data. Finally, it calls check_crc_result to verify
that the value in the record matches what the CRC32
hardware calculated. Getting good results from the
CRC32 hardware is a little tricky, but the details of
that are encapsulated in the support routines. If the
CRC32 does not match, then check_crc_result does
not return; instead, it jumps to the failure display,
ending the loading process.

It is preferable to avoid any unnecessary writes to
the flash program memory, both to reduce wear and
because writes take a relatively long time, which is
better to avoid for speed reasons. So there is a further
check to see whether the data that would be written
happens to match what is already there. This might
be a common occurrence if someone tries “updating”
a module with the same firmware it already contains,
or with a version close to the existing one that may
happen to contain identical bytes in some places. The
loop starting at brec_compare_loop checks each byte
of the destination page in program memory against
the proposed new data in RAM. If it detects no dif-
ferences, then this is not an error, but the write for
this page should not proceed; in such a case the code
just jumps back to loader_entry to read the next
loader record, skipping further processing on the cur-
rent one.

If at least one byte does differ between the exist-
ing program memory and the new data, then it will

be necessary to erase and rewrite the page. The code
sets up the flash SFRs for a page erase and calls per-
form_flash_operation to pull the trigger. Then it
does the write, which is conducted one row (of 64 in-
structions, making eight rows in the page) at a time.
For each row, it checks whether the entire row con-
sists of instructions with the value 0xFFFFFF, which
is the value that results from an erase operation. If
a row of all 0xFFFFFF instructions is detected, then
programming that row is skipped (again, to reduce
unecessary writes).

Once all eight rows have been checked and possi-
bly rewritten, the code jumps back to loader_entry
to handle the next loader record.

C-record: do a CRC check
The C-record requests a CRC check of a range of
addresses in the SRAM. It is 16 bytes long, laid out
like this.

0
2
4

8

12

16 0

“C”
next

start address

end address

CRC32

The fields are defined as follows.
“C” Record type ID; ASCII character “C,” equal to

0x43.
next Address of the next record, 24-bit little endian.

Lowest bit always zero because of word align-
ment, and upper 15 bits always zero because of
the 128K size of the SRAM.

start address Starting address of the range to
check; 17-bit byte address stored as a 32-bit lit-
tle endian unsigned integer, so the top 15 bits
are expected to be zero.

end address Address of the first byte after the
range to be checked, as a 32-bit little endian
unsigned integer; in consequence of that defi-
nition, end address minus start address equals
number of bytes to check.

CRC32 The CRC32 value (parameters as used by
Ethernet, ZModem, and so on) expected for the
byte range.

58

The code for this record type starts by call-
ing spi1_finish_transaction to read the remaining
12 bytes of the record into the common data area.
Then, it initializes the CRC32 hardware with a call
to start_crc, and starts a READ transaction with the
SRAM chip for the starting address of the range to
check. It does a double-precision subtraction to find
the byte count, and runs a loop that reads that many
bytes from the SPI port, sending each one to the
CRC32 hardware. Finally, it calls check_crc_result
to verify that the value calculated by the hardware
matches the one stored in the C-record. If the match
fails, check_crc_result never returns; if it succeeds,
the C-record code ends with a branch to loader_entry
to handle the next loader record.

Be aware that although a C-record can refer to
any addresses in the SRAM, it may be difficult or
impossible to construct one that will succeed when
the range to be checked covers, overlaps, or contains
bytes that depend on the C-record’s own CRC32 field.
Because of that and the fact that the range must be a
single interval, getting full coverage of the image file
is a bit tricky and requires multiple C-records. See
the discussion of image.s below for how full coverage
is achieved in the standard build.

I-record: check hardware ID
The I-record is intended to help make sure that a
firmware image in this or a similar format is really
intended to be loaded on the hardware currently try-
ing to load it. If at some point North Coast Synthe-
sis were to release other digital modules with a simi-
lar design, or if someone modified the Gracious Host
hardware in a way that would break the compatibility
of firmware images, then it would be important not to
accidentally load a firmware image intended for one
of the hardware designs, on the other hardware. So to
prevent problems in such a case, the hardware has a
64-bit ID code, stored at the label HARDWARE_ID
at address 0xA800, in the first eight bytes of the non-
reprogrammable final page of program memory. The
I-record specifies the intended hardware ID for the
current image, and the loader will abort if it sees an
I-record that does not match the ID of the current
hardware platform.

The hardware ID for the Gracious Host, in the
version described by this manual (which as of this
writing is the only version that exists), is 0x4D 0x53
0x4B 0x20 0x30 0x31 0x34 0x01. That is the ASCII
string “MSK 014” followed by a byte of value 0x01
which can be thought of as a version number.

Please use a different hardware ID for any hard-
ware that uses substantially this image file format but
is not 100% compatible with firmware written for the
standard Gracious Host hardware.

The record layout is straightforward, just the
common header shared by all loader records, followed
by the desired hardware ID.

0
2
4

16 0

“I”
next

hardware ID

The fields are defined as follows.
“I” Record type ID; ASCII character “I,” equal to

0x49.
next Address of the next record, 24-bit little endian.

Lowest bit always zero because of word align-
ment, and upper 15 bits always zero because of
the 128K size of the SRAM.

hardware ID The hardware ID to match against.
The code for this record type just loads

the hardware ID from SRAM with a call to
spi1_finish_transaction, compares it against the one
on the final page of program memory, and branches to
failure_tune or loader_entry depending on the result
of the comparison.

J-record: jump to address
The J-record tells the loader to jump (with a com-
puted goto instruction) to a specified address in pro-
gram memory. This facility is used midway through
the loading process, after burning the high copy of
the loader, to transfer control to the new firmware’s
loader code instead of depending on the low copy left
behind by the old firmware. It is also used, at least
in a standard firmware build, to start the calibration
process after loading is complete.

The record layout consists of the standard header,
followed by the address for the jump.

0
2
4

16 0

“J”
next

jump address

The fields are defined as follows.

59

“J” Record type ID; ASCII character “J,” equal to
0x4A.

next Address of the next record, 24-bit little endian.
Lowest bit always zero because of word align-
ment, and upper 15 bits always zero because of
the 128K size of the SRAM. This is only used if
loading continues after the jump; depending on
where the jump is to, there may be no return
from it.

jump address Program memory address for the
jump destination; 16-bit little endian.

The code for this record just calls spi1_read_byte
twice to get the jump address, retracts CS2 to end the
SPI transaction, and does the jump.

S-record: succeed
The S-record terminates the loader with a successful
result. As of this writing, the standard firmware im-
age does not actually use an S-record; instead, when
loading completes, it jumps to the calibration rou-
tine with a J-record. The image file contains an
S-record at the end just in case something causes
the J-record to be skipped. Successful calibration
ends with a jump to the global entry point SUC-
CESS_TUNE, which calls config_timers_for_tunes
and then branches into the S-record code, so this code
does in fact run after successful loading even though
not invoked through an S-record.

The only critical part of the S-record is the “S”
at the start.

0
2

16 0

“S”
reserved

The fields are defined as follows.
“S” Record type ID; ASCII character “S,” equal to

0x53.
reserved Although the S-record formally includes

three bytes for the next-record pointer, these
bytes are not actually used because executing
an S-record terminates the loader.

The S-record code, starting from the label suc-
cess_tune, turns on the front-panel LEDs and then
runs 30 loops of playing a six-note tune that takes two
seconds to play, in square waves on the digital out-
put jacks. The config_timers_for_tunes subroutine
will previously have set up output compare periph-
eral number 1 (OC1) to be connected to those jacks
and ready to generate audio frequencies.

��� ��� �� = 120

4
4� � � ��

Timing for the success display works using
Timer 1, which has previously been configured to
1:256 prescaler mode, 16µs per count. At the start of
the loop the current value of the timer (TMR1 regis-
ter) is captured into W4. Then at each step (for each
note and the rest or pause at the end) code in the sup-
port routine wait_ticks computes a new target value
for Timer 1 by adding an appropriate number to W4,
and runs a tight loop that compares TMR1 against
the target value, terminating when they match ex-
actly. This way there is no need for special handling
of the timer overflow. The loop runs much faster
than the 16µs counting rate of Timer 1, so it should
be unable to miss the exact match, especially bear-
ing in mind that all interrupts are turned off at this
point.

In the success_tune loop there are six calls to
the support routine play_note, which sets OC1 to
the period specified in W2 and then falls through
into wait_ticks to wait 250 ms, the duration of each
note. Then the loop clears OC1R and OC1RS to
make the output compare peripheral go silent, and
calls wait_ticks with an argument value that makes
it wait 500 ms, for the rest at the end of the tune.

After 30 loops of the success tune, a reset instruc-
tion reboots the module.

Maintenance code 4935 invokes the success dis-
play. See the discussion of maintenance codes in the
typing-keyboard driver documentation.

F-record: fail
The F-record terminates the loader with an unsuc-
cessful result; it is basically similar to the S-record,
but with a different display intended to convey the
idea of a failed loading attempt. As with the S-
record, current firmware images never actually in-
clude F-records directly, but this record type exists
for testing, possible future use, as a destination for
other code paths that need to report failures, and
to make it likely that files other than valid firmware
images will terminate processing quickly and harm-
lessly.

In principle, the F-record’s corrent type ID is
ASCII “F,” but any loader record with a type ID
not otherwise handled will be treated as an F-record.

60

0
2

16 0

“F”
reserved

The fields are defined as follows.
“F” Record type ID. ASCII character “F,” equal

to 0x46, is guaranteed to be treated as an F-
record, but any value that is not the ID of some
other record type will be treated as an F-record
by default.

reserved Although the F-record formally includes
three bytes for the next-record pointer, these
bytes are not actually used because executing
an F-record terminates the loader.

The code to handle F-records, starting from fail-
ure_tune, is similar to that for the success tune, but
a little simpler because there are only four notes, no
rest, and the frequencies alternate between low B and
other pitches.

���� �� ��� 4
4

legato
� = 120

�
The play_failure_notes support routine plays two

notes of 500 ms each, one low B and one other
pitch specified by the period in W2, with the LEDs
turned off for the first note and on for the sec-
ond. The failure tune loop is basically just two calls
to play_failure_notes. Before the loop, it sets the
colour of the front-panel LEDs to red. After the loop,
it executes a reset instruction to reboot the module.

The (capitalized) FAILURE_TUNE global sym-
bol is available for other code paths to play the fail-
ure tune. It just calls config_timers_for_tunes to
set up the hardware and falls through into (uncapi-
talized, non-global) failure_tune. FAILURE_TUNE
is conditionally assembled only in the low copy of the
loader, and its absence from the high copy is counted
in loader_delta.

Maintenance code 6697 invokes the failure display.
See the discussion of maintenance codes in the typing-
keyboard driver documentation.

Support routines
The loader source file ends with a few support rou-
tines used by the code above. Several of these are
also exposed as global symbols, only in the low copy
according to conditional assembly directives, because
they are useful elsewhere in the firmware.

The spi1_read_byte routine (also

SPI1_READ_BYTE, used in the USB Mass
Storage driver) reads one byte from the SPI bus,
either because we actually want to read a byte, or
to keep up the read/write balance needed to make
written bytes pass through the system. The new
byte goes into the low byte of W0, and the previous
low byte of W0 is swapped into the high byte, which
is useful when reading a 16-bit number with two
successive byte reads.

The spi1_finish_transaction routine is specific to
the loader and not globally exposed. It takes a byte
count in W5 and reads that many bytes from SPI
into data memory starting at the address in W4, with
the assumption that exactly two of those bytes have
already been requested (so it makes W5−2 requests
for new bytes). It also closes the SPI transaction
assumed to already be in progress. Some per-record-
type handlers use this to load the rest of their record
data after the header.

The success and failure tunes use
play_failure_notes, play_note, and wait_ticks,
each already described.

Then there are several routines for dealing with
the CRC hardware. The start_crc routine (globally
exposed as START_CRC) sets up the SFRs for the
CRC32 peripheral to start a CRC calculation, telling
it to use 8-bit data transfers and a 32-bit polyno-
mial size. The polynomial, in the format required,
is set by the constant crc_polynomial and equal to
x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 +
x7 + x5 + x4 + x2 + x + 1 (hex value 0x04C11DB7,
with the 33rd bit omitted). This code also sets the pe-
ripheral’s shift register value to the constant crc_init,
which is 0x46AF6449, the value needed to make the
PIC24F’s CRC32 peripheral match the behaviour of
the CRC32 algorithm which specifies 0xFFFFFFFF
initialization.

I think, though this initialization value came
mostly from trial and error in the simulator rather
than a deep understanding of how the hardware
works, that what is going on here is that 0x46AF6449
is the value that would end up in the register if we
started with zero and then hashed 0xFFFFFFFF on
the data input, which is equivalent to what the stan-
dard’s somewhat different representation would call
starting with 0xFFFFFFFF in the first place. This
surmise is supported by other tricky distinctions in
the handling of the final check at the end. It ap-
pears that the PIC24F hardware may be in some way
inside-out relative to other descriptions of CRC32. I
was not able to find good example code for this hard-

61

ware that I could adapt for my purposes; common
wisdom among PIC24 programmers seems to be that
the CRC32 peripheral is just too complicated, and it
is better to implement the algorithm in software.

Proceeding with the hardware-based implemen-
tation, the crc_w0_word routine (exposed globally
as CRC_W0_WORD) accumulates a 16-bit value
from W0, little endian, into the ongoing calculation
by loading its two bytes into the hardware FIFO
and falling through into run_crc. That routine (ex-
posed globally as RUN_CRC) triggers the hardware
to start processing bytes from the FIFO and then
waits for it to empty the the FIFO. Note that the
CRC32 hardware processes only one bit of input at a
time, but runs at a clock speed of twice the processor
clock (therefore, 32 MHz); so it runs one byte per four
instructions and the wait is unlikely to be significant.
Although in principle the hardware is designed to al-
low the CRC32 to crunch away while the processor
is doing something else, adding buffer fill juggling on
top of the other complexities of using this hardware
seems unlikely to be worthwhile.

The final support routine for CRC calculation is
check_crc_result. It works by running four data
bytes from the address specified in W1 into the
CRC32 hardware as if they were additional data
bytes, and then checking whether the shift register
contains 0xFFFFFFFF. If the four bytes from [W1]
were the correct CRC32 value of the data processed
before this point, then the shift register should indeed
end up containing 0xFFFFFFFF, indicating a correct
match. In that case, check_crc_result returns. Oth-
erwise, it branches to failure_tune.

The last support routine in the source file is per-
form_flash_operation, exposed as a global symbol
PERFORM_FLASH_OPERATION with the addi-
tion of a disi instruction to temporarily disable in-
terrupts, which is unnecessary in internal calls be-
cause the loader runs with interrupts globally dis-
abled. Apart from that wrinkle, this code is as spec-
ified in the microcontroller data sheet. Its function
is to commence primary ignition on a flash program
memory operation, the details of the operation having
been previously specified by writes to various SFRs
and flash-specific write latches. Because doing such
a thing is dangerous, the hardware requires very spe-
cific steps with precise timing to “arm” and trigger
the operation; otherwise, the request will be ignored.
After triggering the flash operation, the code con-
tains a tight loop which waits for the hardware to
indicate the operation is complete. The data sheet

says that an erase requires 40 ms minimum, and a
write requires 3 ms typical, though I could not find
a timing diagram or a clear explanation of whether
that refers to a row or a single-instruction write, or
whether those two kinds of writes may have the same
duration.

At the end of loader.s, the loader_end label cap-
tures the assembly location counter at the end of the
double-assembled section, for use by mkloaddr to cal-
culate the location of the high copy.

Image generation overview
The source file image.s generates the loadable image,
using the assembler to piece together the records with
the proper link addresses and so on. The basic con-
cept was that using the same toolchain that generates
ordinary object files would make it easy to do things
like make a J-record point at the address of its target.
Unfortunately, bugs and limitations in the assembler
and linker mean that much of the logic for building
the image ends up implemented in macros instead of
directly using the assembler features, and there are
several pieces of support code that need to be invoked
by the Makefile to get information into and out of the
image generator. It is less simple than originally in-
tended; but it does work.

One limitation in particular is that, because the
image file gets assembled into an object section of
“customized data memory” type, it is not treated
as code by the toolchain, and some of the toolchain
features that would be available in code sections are
unavailable. (Trying to make it code instead raised
other problems and proved unworkable.) In partic-
ular, I was unable to attach a label to a point in
the image file and then say “These bytes right here
should be filled in with the address of that label.” Fill-
ing in such bytes would normally be a function per-
formed by the linker, and the linker refuses to touch
customized data memory. So I ended up having to
perform the “bytes should be the address of label”
operation by writing my own code to extract the ad-
dresses of symbols and then fill them into the image,
defeating one of the original purposes of using the
assembler for image generation.

Another assembler limitation is that customized
data memory spaces cannot be bigger than 64K,
and addresses within them cannot be bigger than
16 bits. The SRAM is 128K, requiring 17-bit ad-
dresses. I dealt with that limitation by actually defin-
ing two customized data memory spaces (referred to
in the source code as the low and high mobies), with

62

some logic required to handle switching between them
where necessary. In practice, firmware is unlikely to
grow so big as to require the use of both; but in prin-
ciple, program memory is slightly greater than 64K
all by itself (because of the weirdness arising from
its 24-bit width); firmware could fill all of program
memory; and the overhead of packaging it in loader
records could push the image file further past the
moby boundary.

The Makefile builds the firmware binary by first
running the assembler to generate object files (*.o)
from the assembly-language source files (*.s). In gen-
eral there is one object file for each source file, al-
though as discussed above, loader.s actually builds
two object files, loader-lo.o and loader-hi.o. Then
the linker runs to decide the final addresses of all the
sections of code and combine the object files into a
single unified binary file (firmware.elf) that represents
the entire contents of program memory. This file is in
ELF format, the same format that under Linux (since
version 1.2, anyway) would be an executable file. For
ICSP purposes, the ELF file can be translated to a
.hex file, which is the format usually used by chip-
programming hardware tools; the Makefile includes a
rule to do that if desired.

However, to generate a file that can be loaded
by the module itself over the USB port, there are
more steps needed. The Makefile uses the toolchain’s
objdump utility, piped into a Perl script named
dmp2bin, to generate the files firmware.bin (which
is a plain image of the contents of program memory,
all 66048 bytes of it) and fw-pages.inc, which defines
symbols with names like __page_exists__00 for all
the pages that contain data and will need to be pro-
grammed. These files are used as inputs by image.s
to decide which pages need B-records and to provide
the data bytes for those B-records.

Another Makefile rule generates the file
firmware.syms from firmware.elf by running the
toolchain’s nm utility. This file lists all the program
memory addresses of symbols in the firmware.

Two more include files needed by image.s are
image-syms.inc, which includes the CRC values of
parts of the image file for use in C-records, as well
as the addresses of symbols jumped to by J-records;
and image-id.inc, which includes metadata about the
current build: the username, hostname, and date as
reported by Linux command-line utilities. Both of
these files are generated inside the final firmware.frm
Makefile rule.

The rule that finally generates firmware.frm is a

shell script written into the Makefile, that puts to-
gether all the pieces. One of the problems to be solved
is that the image file needs to contain CRC32 values
for parts of itself. In order to calculate those val-
ues and write the image file, we must already have
the image file, creating a problem of where to start.
The solution is that the Makefile rule is a shell-script
loop: it builds the image file using dummy data for
the CRC32 values, then calculates new CRC32 val-
ues based on the result, and re-generates the file us-
ing those values. It repeats until the firmware.frm
file does not change between two iterations. The
CRC32 values do not (at least, should not) actually
depend upon themselves directly or indirectly, only
upon other bytes in the file, so the process terminates
after two or three iterations.

In more detail, the Makefile rule initializes
firmware.frm to a zero-length file and image-syms.inc
to a file containing a single newline. (Use your imag-
ination for why the newline is necessary.) It creates
the file image-id.inc using the whoami, hostname, and
date commands. Then it assembles image.s. The
macros in image.s figure out everything that should
be in the loadable image, but because image-syms.inc
defines no symbols, the macros just use dummy values
for all the CRC32s and J-record destinations. After
this assembly step, the Makefile rule does some book-
keeping for Make’s dependency tracking, uses nm to
generate image.syms, and uses dmp2bin to generate
a tentative firmware.frm file. This first version will
not actually be usable because of the dummy CRC32
and J-record data.

Then the loop starts. It runs a Perl script
called mkimagesyms, which generates the image-
syms.inc file based on the information in the tentative
firmware.frm, and the firmware.syms and image.syms
files. The script does several things, controlled by
symbols that were defined in image.s.

• If symbols named like __crc_start__XXXX
and __crc_end__XXXX are defined, then
mkimagesyms will compute the CRC32 of the
bytes between those symbols in firmware.frm,
and will define a symbol in image-syms.inc
named like __crc__XXXX and equal to the
CRC32 value.

• When it computes a CRC32 value, mkim-
agesyms will also define symbols in image-
syms.inc named like __crc_addra__XXXX
and __crc_addrz__XXXX and equal
to the starting and ending addresses
of the CRC32 calculation. These dif-

63

fer from __crc_start__XXXX and
__crc_end__XXXX, despite normally
having the same numerical values, because
these new symbols have the data type of plain
numbers, not address labels. The assembler
can set data bytes equal to them, which it
would refuse to do with address labels. They
also are adjusted by the moby feature below to
contain the 17th address bit that the assembler
refuses to handle.

• If a symbol named like __moby__XXXX
is defined, then the value of that symbol
times 0x10000 (that is, 64K) is added to
the address of the symbol __XXXX before
__XXXX is used for other purposes. This
facility would normally be used for CRC32
start and end addresses, with symbols named
like __moby__crc_start__XXXX, to express
which half of the 128K SRAM actually contains
a given address.

• If a symbol named like __psym__XXXX
is defined, then mkimagesyms will define
that symbol in image-syms.inc to have the
value of the program memory address of the
symbol XXXX in the firmware, taken from
firmware.syms. This is used for J-record tar-
gets.

• It detects whether the image-syms.inc file it is
writing is identical to the one that previously
existed, and returns a success exit code (exit
code zero) if so.

Then the script runs the assembler on image.s
again. The image.s file includes image-syms.inc,
which now gives real (though perhaps not final)
values to the CRC32 and J-record values. The
script runs the steps to regenerate image.syms and
firmware.frm, then repeats until mkimagesyms re-
turns exit code zero. It displays the sha1sum output
for image-syms.inc on each iteration, to give the user
some idea that progress is being made, although the
actual check for loop termination is on exact equality,
not on the sha1sum result.

The image generator source file (im-
age.s)
The source file image.s puts the pieces together. It
starts by including global.inc (like all the firmware
source files); fw-pages.inc (which contains a symbol
per page identifying the pages to burn); and image-
syms.inc (generated by mkimagesyms, as above).

Then it sets up a memory space for each 64K

moby of the SRAM (spaces named _sram_lo and
_sram_hi), defines max_record to 1546 to represent
the largest possible loader record (which is needed
for detecting when to switch mobies). It opens an
assembly section in _sram_lo, which will be the des-
tination for the image data; then it starts defining
the support macros.

The basic flow is that we keep a shadow loca-
tion counter in the symbol __location, which records
where we are currently assembling things into the
SRAM’s space. Keeping it in a symbol of our own is
necessary because the assembler narrowly limits the
ways we can use the value of its own location counter.
As we create loader records with the macros defined
for the purpose, this symbol gets updated to reflect
where the next record will be created. When it is de-
tected that the next record will not fit in the current
moby (or may not fit – the check is based on the as-
sumption of a maximum-length record), the macros
automatically close the low moby section and start
assembling into a new section for the high moby.

The check_moby macro comes first. It just checks
whether __location plus the maximum record size
would exceed 64K, and if so, switches to a new sec-
tion. This needs to be a separate macro because of
an assembler bug: if we start a new section inside a
macro and assemble bytes into that section inside the
same macro then the listing file is messed up.

So the loader_record macro, which assembles the
start of a loader record (type ID and next-record
link), is a separate macro, and the main source code
normally runs check_moby before each invocation of
loader_record. The loader_record macro takes as
arguments the record type (one ASCII character), a
name used for defining a symbol associated with this
record, and the record’s size in bytes. The address
of the next record is calculated using this size, with
appropriate adjustment for whether the next record
is being moved into the next moby.

The first 0x0100 bytes of the file contain an ASCII
copyright notice and version identifier. The image-
id.inc file gets included here so that the firmware file
will be automatically stamped with basic metadata.

Loader records start at address 0x0100. The first
is an I-record, requiring the hardware ID to match
the Gracious Host’s. Then come two C-records which
together cover the entire file. There is a macro
called store_crc defined, which takes a name like
XXXX as an argument and checks whether the sym-
bol __crc__XXXX is defined. If it is (because it
came from image-syms.inc), it assembles four bytes

64

containing the symbol value. If not, it defines the
symbol to the value 0xDEADBEEF, which will trig-
ger mkimagesyms to generate a proper value for it
on the next iteration, and assembles bytes with that
value instead. This macro is also used by the page-
burning records later.

The two C-records interlock to cover the entire
file. The first one, referred to as the “hi” C-record,
covers everything after the CRC field of the “lo” C-
record, which is next. The “lo” record covers every-
thing before its own CRC field, including the entirety
of the “hi” record. This arrangment guarantees that
every byte of the file either is covered by some CRC,
or is part of a CRC field, without any circular de-
pendencies. Any file corruption in the class of errors
detectable by the CRC32 algorithm will result in at
least one of these two checks failing. For greater cer-
tainty, the B-records also have CRC checks of their
own.

The B-records are next. There is a macro named
burn_page defined, whose function is first to check
whether a symbol named like __page_exists__00
has been defined. If so, that indicates the page in
question needs to be included in the firmware image.
It sets up a header for a B-record; calls store_crc
to either assemble the data bytes for the CRC of
the page (if they have been defined) or else assemble
0xDEADBEEF and define the symbols that request
calculation of this CRC; and then includes the appro-
priate 1536 bytes from firmware.bin with an “.incbin”
directive.

The source file calls burn_page for each page from
0xA4 down to 0x50 in descending order, using the as-
sembler’s “.irpc” looping construct to abbreviate the
loop. That will program roughly the top half of pro-
gram memory, for the pages actually defined in the
firmware. At this point loader records are still be-
ing interpreted by the old firmware’s low loader copy.
But after page 0x50, there is a J-record pointing at
LOADER_HI_ENTRY, with the address for that
retrieved by mkimagesyms through the __psym__
feature. This directs the old firmware’s loader to
jump to the high copy of the new firmware’s loader,
which ought to have been in the pages just burned.
Subsequent loader records are actually executed by
the new firmware’s loader.

There follows another .irpc loop to burn all de-
fined pages from 0x4C down to 0x00. After that,
firmware update will be complete. The image file
source assembles another J-record to jump to CALI-
BRATION_PROCEDURE, which should terminate

loader processing. But it also assembles a final S-
record as a backstop.

65

Firmware framework (firmware.s)
The firmware.s file contains what might be called the
“main program” of the firmware: the code that runs
at power-on reset, sets up the basic configuration of
the hardware, and then dispatches to other modules.
It also contains some global infrastructure that sim-
ply needed to be somewhere, such as the declaration
of the common data area.

In this chapter I also describe the global include
file, global.inc.

Microcontroller configuration
The configuration registers (“fuses”) and their values
are declared at the start of firmware.s, with some con-
ditional assembly to take into account configuration
settings from config.inc.

At the bottom of this section there is also a quick
declaration of the common data area for use by the
in_common macro.

Last page
The last 1.5K page of program memory cannot be
reprogrammed (or, technically, it cannot be safely
erased) by the microcontroller under its own soft-
ware control; only by in-circuit programming. So
this area can only be used for data that is never
expected to change. In the Gracious Host that is
an eight-byte hardware identifier (ASCII “MSK 014”
followed by byte 0x01) at symbol HARDWARE_ID,
address 0xA800; followed by a table of divisors at
symbol NOTE_TBL, address 0xA808. The divi-
sors are intended to be used with output compare
modules to provide musical-note frequencies. The
firmware Makefile calls a Perl script to generate the
file notetbl.inc, which is imported to firmware.s by an
include directive.

Later bytes of the last page, past the end of the
note table, include a human-readable copyright and
version control ID; but be aware that if you read
these bytes out on a real-life module, they will rep-
resent what was programmed into the chip the last
time it underwent ICSP. Firmware loaded later by
USB could have rewritten other parts of the program
memory, so might not be the same version identified

by the notice on the last page.

Power-on reset
At reset the microcontroller starts executing code
at symbol __reset, which begins by initializ-
ing the stack and the TBLPAG register. If
FILL_RAM_DEAD is selected, it will fill all the
general-purpose RAM with the value 0xDEAD. Then
it opens a TRY/TRIED block with a handler that
points at a reset instruction, just to catch stray
THROWs executed by other code, and calls STAN-
DARD_IO_CONFIG (defined later this same file) to
set up most of the on-chip peripherals.

Next, the reset handler sets up PPS map-
pings for the SPI peripheral, and calls CALIBRA-
TION_TO_RAM from calibration.s to extract the
curren DAC and ADC calibration values.

Optionally, if requested by configuration symbols,
it branches at this point to RUN_TESTS for tests
from tests.s, or to _USB_MASS_ENTRY to at-
tempt reading a simulated filesystem image. Normal
production firmware will instead fall through into the
non-USB behaviour.

Non-USB behaviour
This section of firmware.s contains the top-level loop
that manages the module’s functions when there is
no USB device inserted. Before the loop it calls
USB_INIT to set up the USB driver for detecting
when a device is inserted, sets up the PPS mapping
to send output compare units 1 and 2 to the left and
right digital jacks, and does a couple of other small
initializations like setting the LED colour to red.

This code uses W8 for the current state of the en-
velope, encoded on a scale where each count of the
register value corresponds to 1/(12 × 256) of a volt
and 0x2400 is 0V. That is the scale (MIDI note num-
ber in high byte, fraction in low byte) used by the
calibration API.

The non-USB behaviour (as described in the
UBM) is a baby synthesizer voice: V/oct pitch CV
in on the left, gate CV in on the right, and quantized
pitch, envelope, and quantized and unquantized oscil-

66

lator outputs. While managing these functions, the
loop is also constantly looking for a USB device to be
inserted. When one is, it branches off to the general
USB driver to handle the device.

The main loop starts by idling the microcontroller
to wait for an interrupt, which also refreshes the
WDT. It checks whether the USB driver has detected
a device attach, breaking out of the loop if so. If the
module booted up with a device already attached,
that fact will be detected as a device attach on the
first run through the loop. Then if the loop did not
break for a device attach, it checks whether input 2
is high (gate CV high).

If the gate is low: it turns off the LEDs and
the unquantized oscillator output, then condition-
ally on whether a 618µs tick has occurred (from the
ADC subsystem, used here for envelope timing) it
updates the envelope value – release phase, ready
for a new attack, with the envelope voltage head-
ing for zero. After an envelope update it branches
to tune_oscillators, the shared code for setting the
oscillator frequencies.

If the gate is high: it turns on both LEDs,
then similarly checks for a 618µs tick. If there has
been one since last update, it updates the envelope,
which is a little more complicated because it could
be in the attack, decay, or sustain phase. Once
the new envelope value is in W8, it falls through to
tune_oscillators.

From the tune_oscillators label, the code calls
ADC1_TO_NOTENUM from calibration.s to get
the input voltage from the left channel, and then
CALC_OSC_TUNING (later in this same file,
global because it may be useful elsewhere) to find
the output compate period value for the unquantized
input note using interpolation between values from
NOTE_TBL. This is written into output compare
unit 1 conditionally on the gate input being high.

Then the note value, which is in W7, gets rounded
to the nearest semitone by adding 0x80 and zeroing
the low byte. That quantized value is sent to the
left DAC channel and looked up in NOTE_TBL; no
interpolation needed because it is an exactly tuned
note. The resulting quantized period value is sent to
output compare unit 2, unconditionally.

Finally, the loop sends the current envelope value
to DAC 2, and loops back to wait for another inter-
rupt.

The non-USB loop breaks out to non_usb_done
when the USB driver tells it a device has attached. At
that point it changes the LEDs to solid green, turns

off the output compare oscillators, sets up a TRY
block with catch_usb_session as the handler, and
then calls USB_HANDLE_SESSION, which in the
ordinary course should do all the handling of enumer-
ating and configuring the device, choosing a driver,
and running the device driver until the device is re-
moved.

In case of an exception thrown and not caught
during the driver execution: catch_usb_session sets
up the LEDs to bring rapidly back and forth in red,
using calls to the LED blinker driver. It waits for the
USB driver to report device detach, then falls through
into the normal-case code run when the USB driver
returns without throwing.

Finally, there is a little bit of cleanup:
the top-level code calls USB_DONE and LED-
BLINK_DONE to clean up after the USB and LED
blinker subsystems, particularly by turning off rele-
vant interrupts. These calls are harmless if the rel-
evant drivers were in fact already shut down. Then
it loops back up to the initialization before the main
non-USB behaviour loop.

CALC_OSC_TUNING is declared global in case
it may be useful elsewhere. It calculates a period
value to tune an output compare for a MIDI note,
with interpolation for fractional note numbers. The
input note number (high byte is MIDI note, low
byte is fraction) is expected in W0. It copies that
value to W7, extracts the entries on either side of
the fractional note from the NOTE_TBL structure,
and then interpolates between them, using a tricky
mov.b/swap combination to divide the 24-bit inter-
mediate value by 256 in only two instructions. The
address of NOTE_TBL is left in W6 as a side effect.

Basic I/O
This file provides a few basic subroutines for I/O
that it needs itself and might be needed elswhere.
UNLOCK_PPS does the necessary unlocking se-
quence to allow changes to the PPS mapping reg-
isters; LOCK_PPS, similarly, locks them up again.
Note that there is no automatic handling of nesting
for these operations. They just set the current state
of the registers to locked or unlocked, regardless of
whether it duplicates the previous state, and they
trash W0, W3, and W4.

STANDARD_IO_CONFIG sets most of the on-
chip peripherals to sane default values. It clears the
soft interrupt flags (discussed below); sets the data
direction for the GPIO pins; and configures the in-
terrupt priorities. It sets up Timers 1, 2, and 3 to

67

their standard configurations, which are intended to
support LED blinking (Timers 1 and 2) and the ADC
conversion schedule (Timer 3). It turns off Timers 4
and 5.

It sets up all the output compare units to edge-
aligned PWM mode, driven by the Timer 3 prescaler,
but with modulation values that will actually keep
their outputs low all the time. It sets up the ADC
subsystem to its standard configuration, scanning the
two analog input jacks and the USB bus voltage, one
conversion per Timer 3 reset, and one interrupt after
each completed cycle of three conversions (1.618 kHz
interrupt frequency).

Then it sets the comparators to look at the ana-
log input jacks, with a reference voltage equivalent
to +1.62V at the jacks, and interrupts enabled on
rising edges through that voltage. Note that in hard-
ware testing, it was apparent that interrupts are also
sometimes generated on falling edges; this is not a
published erratum but may be related to one, and we
work around it in the ISR, which is in calibration.s.

Finally, STANDARD_IO_CONFIG sets up the
SPI peripheral for talking to the SRAM and DAC,
and clears the soft interrupt flags a second time to
deal with any spurious interrupts that might have
come in while the peripherals were being reconfig-
ured.

Two more global I/O routines set up PPS map-
pings used in firmware.s and possibly of use else-
where: PPS_MAP_OC_DOUT sets output com-
pare units 1 and 2 to the two digital output jacks, and
PPS_MAP_GPIO_DOUT sets the pins for these
outputs back to plain GPIO mode. Each of these
routines makes further calls to unlock, and then lock,
the mapping registers around its writes to the regis-
ters.

A/D conversion and USB short detect
The A/D conversion ISR is to some extent a safety
feature, so it is expected to be active pretty much all
the time the module is powered up – possibly not dur-
ing the special operations of calibration and firmware
reloading. It extracts voltage measuerments from the
ADC hardware buffer and writes them to global vari-
ables.

Global variables defined here are
SOFT_INT_FLAGS, INPUT_ADC1, IN-
PUT_ADC2, and USB_VBUS_ADC, each one
word long. The other three simply represent raw
ADC readings (10 bits each), updated by the ISR
at 618µs intervals, but SOFT_INT_FLAGS is used

by several different subsystems that need to wait
for interrupts handled by specific ISRs; the ISR is
expected to set an appropriate bit in the variable,
and then the foreground code can check for that bit
after coming out of idle to recognize when the desired
interrupt (as opposed to some other interrupt) has
actually occurred. Constant values for bit numbers
within this variable are defined by symbols with
names starting “SI_” in global.inc.

As well as writing the current ADC readings to
variables, the ADC ISR checks whether the one for
USB voltage is too low (indicating that a short circuit
or other problem has caused the polyfuse to trip) and
sets the soft interrupt flag SI_VBUS_TRIP, if the
voltage is low and has been low on more than 162 con-
secutive ADC interrupts, corresponding to 100 ms.

Before returning, the ISR sets (unconditionally)
the soft interrupt flags for ADC1 and ADC2; separate
flags because there could be two different things in the
foreground waiting for them, as for instance during
multi-threaded calibration.

The last thing in the firmware.s file is a subroutine
called CHECK_VBUS, which is the consumer of the
SI_VBUS_TRIP flag. The foreground ought to call
this periodically when a USB device is attached, to
shut down the module in the event of trouble with the
USB power. It checks for whether the ISR has set the
flag, then if so, it shuts down the USB driver, PPS
maps the output jacks to plain GPIO, sets the LEDs
to blink in a unique red/green flicker pattern, and
then waits, checking the bus voltage after every inter-
rupt, for the voltage to remain good for 1618 consec-
utive ADC interrupts, corresponding to one second
– the pattern expected if the short circuit is resolved
and the polyfuse cools down. Then it resets the mod-
ule.

In practice, a power disruption serious enough to
trip the polyfuse is likely to also disrupt the micro-
controller enough that it will be unable to continue
executing instructions until a power cycle, so the
semi-graceful reset contemplated by CHECK_VBUS
is mostly theoretical. But this code seems to give
it the best chance of recovering under software con-
trol. It has to be called in the foreground (instead
of the ISR just branching directly into the recovery
loop) because logic like the LED blinking also uses
interrupts and trying to keep all that running well
without returning from the ADC interrupt would be
inconveniently complicated.

68

Global include file
Every .s file includes global.inc, which contains stan-
dardized definitions used everywhere. This file con-
tains nested includes of Microchip’s p24Fxxxx.inc
file, which defines things like register names, and con-
fig.inc, which defines build-time options. The build-
time options are described in the “Build environment
and tools” chapter of this manual.

These things are defined in global.inc:
• the in_common macro for defining file-local

static memory assignments in the common data
area, with its support symbols;

• data structure sizes for the USB low-level sup-
port;

• BUFFER_SAFETY_MARGIN, the minimum
number of extra bytes added to buffers to mit-
igate overruns by the USB hardware;

• STACK_RESERVATION, the minimum
amount of stack space that the mass storage
buffer allocator will leave unconsumed;

• symbols starting SI_ (“soft inter-
rupt”) representing bit numbers in the
SOFT_INT_FLAGS variable;

• symbols starting UF_ (“USB flag”) represent-
ing bit numbers, and starting UFM_ (“USB
flag mask”) representing masks (2n), for bits in
the USB_FLAGS variable;

• symbols starting EPF_ (“endpoint flag”) rep-
resenting bit numbers, and starting EPFM_
(“endpoint flag mask”) representing masks, for
bits in endpoint flags fields;

• symbols starting IRPF_ (“I/O request packet
flag”) representing bit numbers, and starting
IRPFM_ (“I/O request packet flag mask”) rep-
resenting masks, for bits in IRP flags fields;

• symbols starting ERR_ representing error
codes used in IRP errors fields; and

• symbols starting PID_ (“packet ID”) repre-
senting codes returned by the hardware to iden-
tify types of USB packets.

69

Low-level USB driver (usb.s)
The low-level USB driver in usb.s is responsible for
all direct communication with the PIC24’s USB hard-
ware; the per-device drivers operate at a more ab-
stract level, calling APIs provided by usb.s. This
module is also responsible for overall management of
the USB session. It detects when a device has been
attached; handles reset, speed detection, and enu-
meration; and after retrieving descriptors from the
device, finds the appropriate per-device driver to run.

In general, the Gracious Host low-level USB driver
is designed to be the smallest and simplest it can
be while still basically working. Many features not
relevant to the Gracious Host, such as hubs and
isochronous transfers, are not supported; and error
checking is minimal. This is not a complete imple-
mentation of USB standards.

Data structures
The first section of the source file defines data struc-
tures used by the low-level driver. The BDT has
a difficult alignment requirement, and most of this
module’s data is statically allocated immediately af-
ter the BDT so that it and the BDT can all be cleared
with a two-instruction repeat loop. Just a little bit
of data specific to the device configuration process is
declared in the common area, because after config-
uration, the per-device driver will own the common
area.

Buffer Descriptor Table (BDT) The USB hardware
has a full complement of special function registers in
the SFR range at addresses 0x0480–0x04A8. But it
also uses a data structure in general-purpose RAM to
communicate with the driver. This data structure has
a variable layout depending on whether the PIC24
is operating as host or device, and also depending
on various configuration options. The RAM-based
data structure basically consists of an array called
the Buffer Descriptor Table (BDT) of two-word (32-
bit) records, each of which may optionally point at a
buffer elsewhere in RAM. The BDT itself must start
aligned on a 512-byte (0x0200) boundary. The buffers
it points to apparently do not need to be aligned at

all – they can start or end on odd bytes.
In full generality, each of the 16 endpoints has

either two or four BDT entries: one each for transmit
and receive when ping-pong mode is disabled, doubled
if ping-pong mode is enabled. Then ping-pong mode
can be separately enabled or disabled for endpoint 0,
and for all endpoints other than endpoint 0. All in all,
this makes for four different BDT layouts, totalling
128, 132, 248, or 256 bytes (plus whatever the buffers
elsewhere consume). However, in host mode (as used
on the Gracious Host), only endpoint 0 is used at all;
and in the Gracious Host ping-pong mode is disabled.
So the Gracious Host BDT really only consumes eight
bytes, for transmit and receive on endpoint 0. The
hardware promises (and apparently is sincere) that
in host mode it will not touch the other bytes that
would be part of the BDT in device mode.

The description of the BDT entry format is in the
PIC24 DS and FRM. Each entry is basically one word
of “status” information, and a one-word address of
the associated buffer. The high bit of the status word
is called UOWN and serves as a semaphore or lock.
The usual pattern is that this bit stays cleared when
the BDT entry is not in use. The software sets up
the buffer, then the BDT entry, including setting the
UOWN bit. Then it writes other setup information
to the SFRs, ending with a write to U1TOK which
triggers the hardware to actually make the transfer.
The software (likely during an ISR) looks at UOWN
to see when the hardware has completed the transfer
and cleared the bit, at which point the software is
free to use and change the data from the BDT entry
and the buffer. The software is not allowed to write
to the BDT entry or the buffer, and should not trust
data read from these places, while UOWN is set.

Ping-pong mode elaborates the handshaking by
having two BDT entries for each endpoint and direc-
tion, so that the software can be setting up or tearing
down one while the other is in use by the hardware.
In principle, that should improve throughput. In
practice, the added complexity seems unnecessary for
the Gracious Host, and even Microchip’s C-language
driver, although capable of enabling ping-pong mode,

70

does not seem to be capable of actually using it to im-
prove throughput. As far as I can tell, the Microchip
driver will always wait for the current packet trans-
fer to complete and return UOWN before it starts
working on another packet, making ping-pong mode
superfluous. Maybe it could still have some advan-
tage in improving throughput between a background
driver and foreground client.

Endpoint (EP) The Gracious Host USB driver
makes use of a 14-byte structure called an endpoint
(EP) which refers to one of the endpoints on the at-
tached device. The static variables in usb.s include
one of these, for endpoint 0, which is implicitly used
by the API calls for control transfers. Per-device
drivers are expected to define their own and pass the
addresses into the relevant API calls when making
non-control transfers.

Here is the layout of the EP structure. It should
be 16-bit aligned, anywhere in RAM.

0
2
4
6
8

10
12

16 0
next
flags

endpoint no.address
IRP pointer

max packet size

NAK count
error/interval

Fields are as follows.
next Pointer to the next endpoint. These structures

are meant to be arranged in a single-linked list
using LL_APPEND_ATOMIC from utils.s.

flags Bit fields describing the type and status of the
endpoint. Constants for the Gracious Host-
defined bit fields are in global.inc as symbols
starting EPF_ and EPFM_. The high byte of
this word (byte at offset 3) is a copy of the 8-
bit bmAttributes field from the USB endpoint
descriptor returned by the device.

endpoint no. The byte at offset 4 is the 8-bit end-
point number on the device to which this struc-
ture connects.

address The byte at offset 5 is the 8-bit USB bus ad-
dress of the device. The Gracious Host always
sets this to 1 during enumeration. The reason
for storing it in the EP structure at all is that
bytes 4 and 5 together form a 16-bit word in a
format the hardware wants to see; and for the

earliest control transfers that actually perform
the enumeration, it may need to be zeroed.

IRP pointer Address in RAM of the IRP data
structure (next subsection) that this endpoint
is currently processing.

max packet size Maximum packet size the device
supports for this endpoint, as it reported during
configuration. Set to guessed constants in early
transfers, before the device has actually told the
host what size it supports.

NAK count Count of the number of NAK packets,
used for detecting the “too many NAKs” error
condition on endpoints that do not allow infi-
nite NAKs.

error/interval Normally, an error code. Values
are defined in global.inc, and some of them
are set by the hardware. A zero value, called
ERR_SUCCESS, corresponds to no error. The
occurrence of an error is also indicated by the
IRPF_ERROR bit in the IRP (not EP) flags
field. The EP error field is overloaded by the
subroutines that configure INTR endpoints, to
return the number of milliseconds at which the
device requests to be polled. The calling driver
is expected to pick up this value from the field
and store it somewhere safe before actually us-
ing the newly-configured endpoint, at which
time the field will be used normally for error
codes.

I/O Request Packet (IRP) Another data structure
used for communication between per-device drivers
and the low-level USB subsystem is called the I/O
Request Packet (IRP). Each IRP describes a request
for a transfer to or from the USB device. The IRP is
separate from the EP so that a driver can maintain
several of them for different frequently-used kinds of
transfers, and point the EP to different IRPs to easily
switch between them.

The IRP consists of an 8-byte header which points
to a buffer. For control transfers in particular, the
buffer is expected to immediately follow the header,
and to contain eight bytes at the start for the SETUP
message followed by space for the data payload if any.
For other types of transfers (that is, interrupt and
bulk; isochronous are not supported), the buffer may
be anywhere in RAM.

71

Here is the IRP layout.

0
2
4
6
8

16 0
flags

buffer size
buffer address

fill point

setup
message
(control

only)

The fields are as follows.
flags Bits describing the type and status of the re-

quest. Note in particular that there is a UOWN
flag for handshaking between the foreground
and ISR in software, much like the handshak-
ing between the software and hardware on
BDT entries. Constants for the bit fields are
in global.inc as symbols starting IRPF_ and
IRPFM_.

buffer size Size of the buffer. This controls the
transaction size. The number here should
include the setup message for control trans-
actions (eight bytes), and any data payload.
Because the hardware sometimes overruns on
DMA writes, it is advisable to actually allocate
seven or eight bytes of padding after the buffer,
which are not counted in the number of bytes
stored here.

buffer address Address in RAM of the start of the
buffer. For control transfers, this must point
immediately after the IRP header structure
(that is, at offset 8 from the start of the header).
For other transfers it may point anywhere.

fill point Offset into the buffer (that is, byte count,
not address) of the next byte to transfer, or im-
mediately after the last byte transferred. Note
that for control transfers, this will be 0 until
the setup message is sent, then starts at 8 for
the data bytes.

setup message The 8-byte setup message (for con-
trol transfers only) is formatted as described in
the USB standard.

Initialization and finalization
The USB_INIT subroutine sets up the USB hard-
ware to listen for a device attach. It basically just
loads appropriate values into the SFRs and turns

on the interrupts for device attach and 1 ms timing.
Note that the USB hardware potentially provides two
different 1 ms interrupts: the “On The Go” 1 ms in-
terrupt, which is available at all times and is the one
turned on here, and the “SOF” interrupt, which is
only available when actually sending SOFs or keep-
alives to an attached USB device. The SOF interrupt
is more accurately 1 ms. The Gracious Host switches
between the two, using the SOF interrupt for tim-
ing when possible but the 1 ms interrupt at times
like these when SOF/keep-alive generation cannot be
turned on.

USB_DONE is even simpler: it just turns off USB
interrupts, clears a few control registers, and clears
the soft USB_FLAGS variable. If there should still
be a device attached at this point, the lack of SOFs
or keep-alives from the host will cause it to automat-
ically shut down after a few milliseconds.

Calling USB_INIT when there is already a USB
session in progress will break the session off ungrace-
fully, but should be safe from the driver’s point of
view as long as the foreground keeps track of its
own memory allocations and other state. It may
be best not to do this while there is a transfer in
progress, because the initialization includes the BDT
and the hardware could be attempting DMA at the
time. Calling USB_DONE when there is no ses-
sion in progress, or when there has been no matching
USB_INIT call, should be safe.

Session handler
The progress of the USB session, from at-
tach to detach, is handled by the subroutine
USB_HANDLE_SESSION. Normally, the main loop
in firmware.s calls USB_HANDLE_SESSION when
USB_TEST_ATTACHED returns NZ status; it is
expected, though not guaranteed in case of error, that
the session handler will remain in control until the
USB device detach. It ought to THROW in case of
an error that cannot be handled within the driver, but
firmware.s is also prepared to handle a simple return
in an abnormal state, with the device still attached.

The session handler is assembled into specially-
named sections, not the default .text, so that the
customized linker script can insert code fragments
from other files to build up the executable TDL and
TIL. Devices have device descriptors which say what
kind of device they are, and code in the TDL can
match on those descriptors to call a driver for the en-
tire device. Devices also have (potentially multiple)
“configurations,” each of which may contain (poten-

72

tially multiple) “interfaces,” and each interface gets
passed to the TIL for a possible match. There is
no intermediate-level list for matching configurations;
the matching is always on the device or an inter-
face, although an interface match will result in the
firmware selecting the associated configuration when
setting up the device.

Sequence of events Several things have to happen
in a specific sequence at the start of the session to
properly set up the USB device. Here’s a summary.
The structure of the code follows the sequence quite
closely.

• Upon device attach, the session handler runs.
The caller has set both LEDs green.

• There is a 100 ms pause for the power to stabi-
lize.

• Check for low or full speed
(USB_TEST_SPEED). This point seems
to be the only safe one for making this test; I
had a lot of trouble trying to check the speed
at other points in the sequence. The left LED
goes red if low speed.

• Send “reset” for 50 ms. Right LED goes red at
the start of “reset.”

• Start of SOF/keep-alive generation. 100 ms
pause for reset recovery.

• Prepare the static EP structure for endpoint 0,
and a blank IRP structure in a lnk/ulnk stack
frame.

• Reconfigure interrupts: OTG 1 ms off (from
this point timing will use the SOF interrupt);
SOF interrupts on; transfer complete, error,
and detach on. The “detach” interrupt flag is
cleared first to ignore any stray detaches sig-
nalled prior to this point. Sometimes contact
bounce as the plug is inserted causes these. If
the device really detached during the roughly
250 ms elapsed since attach was detected, and
has remained detached, then that fact will be
detected anyway as soon as the interrupt is en-
abled, because of the level-triggered nature of
the detach interrupt.

• “Enumeration”: do a zero-byte CTRL transfer
telling the device that its address is 1 (uncon-
ditionally). Call to do_ctrl_z_transaction.

• Wait 5 ms for the device to recover from enu-
meration.

• Do a CTRL read transfer for first 8
bytes of the device descriptor; call to
do_ctrl_r_transaction. There is an additional

5 ms pause here (not officially required by the
spec) because some devices seem to have trou-
ble with very fast setup.

• Extract the actual size of the device descrip-
tor from the 8-byte prefix just obtained. It
will almost certainly be 18 bytes, but doing
this two-step process seems to be the expected
procedure. Do a CTRL read transfer for the
entire device descriptor. Copy the device de-
scriptor (or, anyway, an 18-byte block from
the buffer) to the local common-data variable
saved_dev_desc to preserve it during TPL pro-
cessing. Update max packet size for EP 0 from
the value in this descriptor. There is another
extra 5 ms delay after reading the whole de-
scriptor.

• Check the device descriptor against the TDL
(whole-device portion of the TPL). The low-
level driver sets up an exception frame and the
TDL code is expected to THROW in case of a
match.

• The linker inserts TDL fragments from all
the drivers inside the exception frame. The
exception handler, if reached because of the
THROW, jumps to the per-device driver which
the TDL fragment selected by setting W4. The
exception handler also turns off the LEDs.

• Without a THROW, the session handler starts
looping over configuration descriptors, using
the count of configurations from the saved de-
vice descriptor.

• Request eight bytes of the current-index config-
uration descriptor with a CTRL read transac-
tion. In earlier versions this was a request for
one maximum-length packet, which is usually
eight bytes for low-speed devices but 64 bytes
for full-speed. The configuration descriptor is
of variable length, often less than 64 bytes, and
some devices (against specification) were found
to have trouble when the request was longer
than the entire descriptor; so in the current
firmware, the initial request is limited to eight
bytes regadless of the packet size, and so it
should always be less than the entire descriptor.
This request is also followed by a 5 ms safety
pause.

• Find the descriptor’s actual size from the first
few bytes; skip to the next one if it is too long
for our buffer. Buffer size is set to accommodate
MAX_DESCRIPTOR_SIZE set in global.inc,
currently 1023 bytes, plus appropriate headers

73

and padding. Descriptors we can reasonably
use should never be longer than that. If de-
scriptor is not too long for buffer, then request
all of it with another CTRL read, and wait
5 ms. Save the start of this configuration de-
scriptor (10 bytes) in the common-data variable
saved_conf_desc.

• The configuration descriptor is a pile of mis-
cellaneous structures including its own header,
one or more interface descriptor headers, and
other things nested inside the interface descrip-
tors. Every item in the pile is tagged with a
magic number saying what it is (though we do
not necessarily understand all the types) and
its length, and these fields are consistently laid
out even if the rest of the item is opaque. So
there is a chunk of code to “eat” a descriptor
from the bottom of the pile, moving everything
after it down however many bytes to bring the
next item to the start of the data buffer (right
after the setup message). This operation gets
repeated until there is an interface descriptor
header at the start of the buffer.

• Check the interface descriptor against the TIL.
As with the TDL, the session manager sets up
an exception frame and the TDL entries from
per-device drivers get inserted inside the frame
by the linker. If one THROWs, then the appro-
priate driver gets control, through the exception
handler’s goto W4 instruction.

• If no THROW, then the session handler loops
around, removing items from the buffer until
there is an interface descriptor at the start.
It knows how many interface descriptors are
meant to exist in total, from a count in the
saved configuration descriptor.

• If it gets through all the interface descriptors
without a match, it loops to the next configu-
ration descriptor.

• If still no match after the loop over all config-
urations, the session handler sets up an error
display with the LED blinker driver, and waits
for the device to be detached before returning.
This code is mingled with a very small “per-
device driver” for hubs (recognizing them on the
basis of device descriptor, with a high-priority
TDL entry), which sets up a different blinking
error display and then waits for disconnect be-
fore returning.

There are a few extra globally-
visible labels inside the session handler

code: SKIP_PAST_INTERFACE and
SKIP_PAST_CONFIGURATION, which are
at the ends of the associated loops and possibly
useful to TPL entries that try to be “clever”
about overriding the usual priority scheme; COM-
PLAIN_ABOUT_DEVICE, which gives the
“unsupported device” error display (possibly useful,
again, for a TPL entry that detects a device known
to be unsupportable); and ULNK_RETURN and
RETURN_INSN, which are general-purpose helpers
described in the “programming tips” chapter.

Interface to TPL entries TPL entries are fragments
of code that per-device drivers can define in magi-
cally named assembly-languge sections. The linker
will insert the entries into the session handler at the
appropriate points, with the possibility for defining a
priority order among entries by the choice of section
names. Details of the section naming scheme are cov-
ered in the “programming tips” chapter of this man-
ual. TPL entries may be designated for insertion in
the TDL (targeted device list, meaning they look at
device descriptors) or the TIL (targeted interface list,
meaning they look at interface descriptors).

The general function of a TPL entry is to look
at the current device or interface descriptor, which
will be found starting at address W14+IRP_SIZE+8
(that is, offset 16 in the current lnk/ulnk stack
frame, after the IRP header and setup message) and
decide whether the driver wants to accept responsi-
bility for the currently inserted device on the basis
of that descriptor. If this driver does want to handle
this device, the TPL entry should THROW, with the
entry point of the driver stored in W4. If it does a
jump instead of a THROW, then the driver will need
to clean up the exception frame by calling TRIED.
There are some support routines provided for com-
mon types of TPL entries, so that usually an entry
will just be a few instructions to set up registers and
then make a call.

TPL entries must preserve the stack context
(W14, W15, and the data they point to) and must
return the driver address in W4 when doing the
THROW in case of match, but otherwise are free to
overwrite the working registers. The registers W4,
W5, and W6 are typically used as input arguments
to the support routines. Support routines are global
symbols starting TPL_. The standard ones are as
follows.

TPL_MATCH_DEVICE_CLASS is for match-
ing device descriptors, in the TDL, on the basis of

74

their USB “class” and “subclass” bytes. For exam-
ple, the tdl10 section defined in usb.s recognizes all
devices of class 9, which are USB hubs, to THROW
to a stub driver that puts up an error display. When
calling this routine, put the driver address in W4 and
a matching mask in W5: descriptor class value in the
low byte and subclass in the high byte, with either
of them possibly 0xFF as a wildcard that will match
anything. So for the hub entry, which matches all
devices of class 9 regardless of subclass, the value for
W5 is 0xFF09 and the code is as follows.

mov #handle(complain_about_hub), W4
mov #0xFF09, W5
rcall TPL_MATCH_DEVICE_CLASS

TPL_MATCH_INTERFACE_CLASS is for
matching interface descriptors, in the TIL, according
to “class” and “subclass” much in the manner of
TPL_MATCH_DEVICE_CLASS. It needs to be
a separate routine because of the different layout
of device and interface descriptors. As with the
device version, the driver address goes in W4 and
the class and subclass go in W5, with class in the low
byte, subclass in the high byte, and 0xFF serving
as a wildcard. For example, the USB-MIDI driver’s
TIL entry sets W5 to 0x0301 and calls this routine
to match interface descriptors that name class 1
(“audio”), subclass 3 (“MIDI streaming”).

TPL_MATCH_CLASS_AND_PROTOCOL is
like TPL_MATCH_INTERFACE_CLASS, but it
also tests the “protocol” byte from the descriptor
against the low byte of W6. For example, the boot
mouse driver uses this routine to check for an inter-
face of class 3 (“human interface device”), subclass 1
(“boot”), protocol 2 (“mouse”).

Calling convention for per-device drivers Be-
cause per-device drivers are normally entered by a
dynamic goto from an exception handler, they are
entered in the stack and exception contexts that
applied immediately before the corresponding TRY.
That means:

• upon entry to the driver, there is a lnk stack
frame in effect, containing a leftover IRP, setup
message, and what remains of the descriptor
pile; the driver may still have a use for that
in calling some setup utility subroutines, which
may implicitly do ulnk, but must do ulnk one
way or another before returning if it returns
with return instead of an exception;

• configuration of the device, in the USB sense

of sending it a SetConfiguration command, still
must be done;

• if and only if the driver was entered from the
TIL (matching an interface descriptor as op-
posed to a device descriptor), then the low-level
driver has the configuration descriptor contain-
ing the current interface descriptor memorized
in internal static variables accessible to the sup-
port routines;

• returning from a driver with return, af-
ter cleaning up the stack frame, returns to
the caller of USB_HANDLE_SESSION, under
non_usb_done in firmware.s;

• returning with return is expected only after
the device has detached, because if it is still at-
tached, then the attached device will be imme-
diately detected again and the session handler
will run again; and

• exceptions thrown by a driver are handled
by catch_usb_session in firmware.s, and the
driver is expected to THROW if there is an er-
ror so serious it cannot recover, whether the
device has detached or not, or on a normal de-
tach if that is detected implicitly during a call
to USB_WAIT_ON_IRP.

Most per-device drivers call a configuration sup-
port subroutine that implicitly removes the session
handler’s lnk frame, possibly they create a new frame
of their own, and then they enter an infinite loop with
no explicit return. They call USB_WAIT_ON_IRP
inside the loop, which implicitly checks for device de-
tach. Normal operation continues either until power-
down or until the device detaches, in which case
USB_WAIT_ON_IRP detects the detach and does
a THROW. The THROW terminates the driver and
cleans up the stack. So there is very little explicit
handling of detach, termination, or stack frames in-
side the driver. That all happens automatically as
a result of calling the support routines. The USB
mass storage driver, which in normal operation does
not return at all (because firmware update ends in a
global reset), handles the stack in a somewhat more
complicated way.

Per-device drivers have basically free use of the
working registers and any module hardware that
does not have permanently fixed configuration. The
firmware framework re-initializes as necessary any de-
vices that drivers might reasonably want to reconfig-
ure (such as output compares), when it regains con-
trol. Per-device drivers have free use of the common
data area, after they have completed any calls to the

75

configuration helper APIs (which use information left
by the session handler in the common data area).
There are some conventions for common-data usage
on calls between per-device handlers, which are out
of scope of this chapter.

Foreground transaction processing
The global subroutine USB_WAIT_ON_IRP is the
main API for other drivers to make USB transactions.
It requires an EP and an IRP to exist in RAM. The
endpoint should be already initialized, and the buffer
address field of the IRP, but this routine sets up the
other fields of the IRP using arguments from working
registers, because its loop needs to repeatedly reini-
tialize these fields anyway.

Put the configuration flags (OR of IRPFM_ con-
stants) in W1. Put the buffer size in W2, the EP
address in W4, and the IRP address in W5. This
routine may trash W0 and W3.

Depending on the type of transaction,
USB_WAIT_ON_IRP may take a long time
to return; with USB bulk transactions in particular,
it will wait for data to be available, which has no
time limit. There is special support for calling the
MIDI_BACKGROUND_SAFE subroutine from
midi.s inside the loop to keep the backend’s ongoing
tasks running while waiting for more input data;
set the UF_MIDI_BKGND bit in USB_FLAGS to
enable this feature, and do so only after the MIDI
backend driver has been initialized. Also inside
USB_WAIT_ON_IRP’s loop, there is a check for
device detach, which will result in an exception
THROW. Errors as such, reported by the hardware,
will be retried five times and then also result in
a THROW. When doing an error retry, the loop
unconditionally clears the EP’s “stall” flag. It does
a normal return if the USB transaction succeeds.

There are several more non-globally-visible en-
try points used for CTRL transactions within usb.s.
They just put commonly-used values into the ar-
gument registers before jumping or falling through
to USB_WAIT_ON_IRP, so that these values need
not be specified repeatedly everywhere. Note that a
CTRL transaction with no data in either direction
(referred to as “ctrl_z” in the code, for zero data
bytes) is treated by USB as a write of length zero.

TPL support routines
The support APIs for TPL entries are described
above; this code is mentioned again here to follow
the sequence of the source file. The exception han-

dler active during TPL processing is just three in-
structions to turn off the front-panel LEDs and jump
to the driver address that should be in W4. The three
TPL_MATCH_ subroutines have a support routine
of their own for doing the 0xFF wildcard match, and
they share a lot of code with each other.

Device driver support routines
The subroutines in this section send specific control
transactions to the USB device that are (or could
be) shared by multiple per-device drivers. They are
intended to be called soon after the driver receives
control from the TPL.

USB_CONFIGURE_DEVICE tells the device
to use the current “configuration,” as described by
the interface descriptor in the lnk stack frame and
memorized during TPL processing. It then re-
moves this stack frame. Drivers that want a stack
frame of their own should do their lnk after the
call to USB_CONFIGURE_DEVICE. On entry, W8
should point at an array of EP structures, with W9
containing the count of how many EPs are in the ar-
ray. Most per-device drivers are expected to set W8
and W9 and then call this routine as the first thing
they do.

USB_CONFIGURE_DEVICE initializes the
EPs according to the descriptions of endpoints in
the descriptor, in the order that they occur in the
descriptor, up to the length of the array or up to the
number of endpoints described in the descriptor. If
the array is too short to contain all the endpoints
from the descriptor, then the additional endpoints
are ignored; and if the array is longer than necessary
to contain all the endpoints, then the remaining
array entries are left uninitialized. On return, the
W8 register is left pointing just after the last EP
structure that was actually filled. The reason for
this behaviour is that interfaces commonly list the
basic, standard, or required endpoints first in the
descriptor, and then optionally extra endpoints later.
So a driver that only supports basic features can ask
for just the first one or two endpoints and be likely to
get the ones it wants, whereas a more sophisticated
driver can ask for more, and then detect whether the
device offered the more advanced ones.

Note that although devices do commonly put re-
quired endpoints first and optional ones later, devices
do not necessarily follow a specific convention for the
order of input and output endpoints on interfaces
that include both. The driver that supports a bidi-
rectional interface (or possibly even a unidirectional

76

interface with more than one endpoint) will need to
dig through the array to figure out which endpoint
is which; see FIND_IN_OUT_ENDPOINTS in qw-
erty.s for relevant code.

USB_SET_BOOT_PROTOCOL is specifically
for Human Interface Devices that support a “boot”
protocol, namely mice and typing keyboards. It
makes a SET_PROTOCOL request for protocol 0,
selecting the simplified protocol that the USB orga-
nization proposed for use during PCs’ boot processes.

USB_SET_REPORT does a SET_REPORT op-
eration for a HID, with the single byte of data from
W2 low. This is used by typing keyboards to set the
LED state. In the current firmware it is not used
elsewhere, but could be relevant for other HIDs.

General USB APIs
The routines in this section do low-level things related
to timing and bus status that may be of interest to
per-device drivers, particularly for calling within a
driver’s main loop.

USB_TEST_ATTACHED makes sure that the
device is still attached, and incidentally, confirms that
the bus voltage is okay with a call to CHECK_VBUS.
Calling this regularly fulfills the driver’s obligation
to keep an eye on VBUS. It returns the result in
the CPU’s zero flag, so upon return it can be tested
with bra z or bra nz; non-zero means the device
is attached. As a side effect, in case of disconnec-
tion USB_TEST_ATTACHED will also set the dis-
connected error code on the current EP if any, and
the error bit on the currently in-progress IRP, if
any. This is incidentally where the Z_RETURN and
NZ_RETURN general utility labels are defined.

The internal labels referring to “confirm”(ing) at-
tachment and detachment are left from an earlier ver-
sion that attempted to go all the way to the hard-
ware, in foreground code, to check whether the de-
vice was attached or detached. I found that ap-
proach unreliable and the current version just looks
at the soft UF_ATTACHED flag in USB_FLAGS,
which is maintained by the ISR. The attach/detach
interrupts seem to be the only trustworthy way of
knowing whether the device is attached. Driver code
that wants to really just check for whether the de-
vice is attached or not, without the side effects of
USB_TEST_ATTACHED, could also look directly
at the UF_ATTACHED flag; but the side effects of
calling USB_TEST_ATTACHED are usually desir-
able in practice.

USB_TEST_SPEED still does go all the way to

the hardware to test whether the device is low-speed
or high-speed. This approach is unreliable unless
the check happens at exactly the right point in the
attach/enumeration process. Since it works by ex-
amining the “idle” voltages on the bus, which are
different between low and full speeds, it can only
read a correct answer when the bus actually is idle.
The subroutine attempts to improve reliability by
waiting until the hardware gives the same answer
in three consecutive checks at intervals of approx-
imately USB_BUS_SETTLING_TIME instruction
cycles (each 62.5 ns; recommended value 24, which
is 1.5µs). But even with this measure, the call
to USB_TEST_SPEED should normally be done
only by the session manager, and per-device drivers
should instead look at the UF_LOW_SPEED flag in
USB_FLAGS. As side effects, USB_TEST_SPEED
sets that flag and the hardware’s configuration bits
(LSPDEN in U1ADDR and LSPD in U1EP0) accord-
ing to the detected speed. Note that it is important to
configure both the LSPDEN and LSPD bits, to match
each other and the device; disagreement among them
causes confusing problems.

USB_WAIT waits, for a number of milliseconds
specified in W0. It actually waits for the millisecond
interrupt to occur W0 number of times, which means
the real time between the call and return could be al-
most a millisecond less than the W0 value. The “mil-
lisecond interrupt” is either the USB OTG 1 ms in-
terrupt, or the SOF interrupt, depending on whether
SOF generation is currently turned on. Per-device
drivers will normally only be running while a device
is attached, so SOF generation will be on and they
will be getting the SOF interrupt, which in my tests
seems to give more accurate timing. But the low-
level driver also supports use of the USB OTG 1 ms
interrupt so that it can call USB_WAIT during the
attach process, when SOF is turned off.

USB_LOOP_WAIT is similar, but uses a soft
timer that counts interrupts even while outside a
call to USB_LOOP_WAIT. The concept is that re-
peated calls to USB_LOOP_WAIT with a given W0
value will return W0 number of milliseconds apart,
even if the foreground processing between calls to
USB_LOOP_WAIT may consume more than one
millisecond. If the scheduled time is already overdue
when this routine is called, it returns immediately,
resetting the timer for a full W0 number of millisec-
onds before the next return. This routine will also
call the MIDI background task within its loop, if the
UF_MIDI_BKGND flag is set in USB_FLAGS. Per-

77

device drivers for devices with “interrupt” endpoints,
which are supposed to poll the device a given number
of milliseconds apart, can call USB_LOOP_WAIT
to handle their poll timing with very little other ef-
fort required.

USB_LOOP_CHECK is a variation on
USB_LOOP_WAIT that does not wait but
only tests whether a scheduled poll is due, return-
ing NZ if it is due and Z if not. This behaviour
would be appropriate for a driver that has lower-
priority things it can do while waiting for the poll.
USB_LOOP_CHECK does not run the MIDI
background.

Calls to USB_LOOP_CHECK and
USB_LOOP_WAIT use the same timer and
may be mixed. It is normally expected that a driver
will always use the same W0 value for these two rou-
tines, at least for a given device, or at the very least,
that it will only infrequently change the value of W0.
If the W0 value changes from one call to the next,
USB_LOOP_CHECK or USB_LOOP_WAIT may
skip a poll or trigger an extra poll, but should not
misbehave beyond that.

The token store
The USB standards allow, but do not require, hosts
to poll device bulk endpoints at any time the bus is
not scheduled to be used for some other purpose. If
permitted to retry each failed poll immediately, the
Gracious Host firmware is capable of polling at up-
wards of 40 kHz. Polling so often seems undesirable.
The bulk endpoints of devices this host is intended
to support are those on USB-MIDI and mass storage
devices. The former only produce data when there
is MIDI traffic (usually at most a few hundred bytes,
fewer messages, per second) and the latter often go
quiet for many milliseconds at a time due to the de-
lays of reading flash memory, hard drives, or similar.
So polling more than a few times per millisecond has
no useful effect, and it consumes extra power, possi-
bly loads down the microcontrollers at either end of
the bus (slowing their ability to do other tasks), and
may contribute to EMI. Conducted EMI from USB
devices is often an issue in modular synthesizers and
I would prefer to keep the USB device no busier than
necessary.

The Gracious Host firmware attempts to re-
duce the polling rate to a more reasonable level
without harming response time by implementing
a token store for USB polling. The global vari-
able TOKEN_STORE records how many tokens

the low-level driver is currently permitted to send
before waiting. Each time the ISR sends a to-
ken it subtracts one from TOKEN_STORE, and it
will not send a token if TOKEN_STORE is zero.
The global variable TOKEN_ALLOWANCE will be
added to TOKEN_STORE once per millisecond.
Note that TOKEN_ALLOWANCE defaults to zero.
USB_WAIT_ON_IRP forces TOKEN_STORE to
0xFFFF inside its waiting loop.

Most drivers communicate with the USB hard-
ware only through USB_WAIT_ON_IRP (directly
or inside other APIs), so the token store has no im-
portant effect on most drivers. It just gets topped
up to 0xFFFF each time through the loop and is
never expected to reach zero. But the USB-MIDI
driver, which implements its own waiting loop and
calls USB_POKE, interacts with the global variables
to limit its bulk endpoint polling rate to (nominally)
two polls per millisecond, plus an additional one each
time through the MIDI background processing.

Packet send and poke
Several different code paths result in the host at-
tempting to send a token on the USB bus. A token
attempt might occur after an SOF interrupt because
the foreground has queued a request for a transfer;
after a failed earlier token, to retry it; after a suc-
cessful earlier token, to proceed to the next step in a
multi-step transaction; or when explicitly requested
by the foreground. These code paths converge on
the send_next_token label in usb.s. The low-level
driver’s packet-sending all originates in the USB mul-
tiplex ISR; but there is also the potential that fore-
ground code might want to get a queued transfer
started immediately, without waiting for an inter-
rupt, and the USB_POKE subroutine provides ac-
cess to send_next_token from foreground code for
this purpose. Calling USB_POKE tells the driver
that now is a good time, from the foreground’s point
of view, to send a token if it happens to have a token
it wants to send.

The send_next_token routine expects W1 to
point at the EP data structure of the current trans-
action, if any; USB_POKE automatically sets W1
from an internal variable and resets it to the start
of the list if the list is completed, but some paths in
the ISR use this register to have the new token be a
response to an earlier token on the same endpoint as
a previous token.

First there are some general checks: whether the
global UF_BUSY bit is set (indicating a token is

78

currently in progress, so we cannot start another)
and whether we have reached the end of the end-
point list (indicating no further work to do). Either
of these result in an immediate return. Otherwise,
send_next_token loops over the endpoint list look-
ing for one that is not marked “stalled” and that has
an active IRP with the IRPF_UOWN flag bit set
(indicating that the foreground has given ownership
of that IRP to the low-level driver).

For CTRL transactions: the UF_SENT_CTRL
bit gets checked. Only one CTRL transaction is al-
lowed per frame, so this bit is set on the first CTRL
transaction of the frame to prevent a second one from
happening. It is reset by the ISR on the SOF inter-
rupt. If it is found already set here, control goes
back to send_next_token to look for something else
to send. Otherwise, the code consumes a token from
TOKEN_STORE, aborting if there are none remain-
ing, and checks the current stage of the transaction.

The first stage of a CTRL transaction is the
SETUP token. In this case, the code confirms the
outgoing BDT entry is not already occupied (should
never happen, but just in case), and then sets up the
BDT entry with the appropriate flags, buffer size,
and buffer pointer read from the IRP. It also saves
the pointers to the current EP and IRP pointers in
the variables tx_ep and tx_irp. Then it writes to the
hardware registers to tell the USB hardware to send
the token, and branches to finished_sending_ctrl.

The second stage of a CTRL transaction is the
DATA stage. This is optional, conditioned on
whether there was space for data declared in the IRP.
Many CTRL transactions send all their information
in the eight-byte SETUP packet and skip the DATA
stage. But, if a DATA phase is in order, the code sets
up the BDT for one packet of data transfer. That will
be a maximum-length packet if the remaining buffer
(from fill point to end) is at least the maximum packet
length, and otherwise it will be a packet covering the
rest of the buffer. The code covers both read and
write using test-and-skip instructions to handle the
few differences between the two directions. Basically,
it just points the hardware at the buffer and tells
the hardware to do the transfer. Then this path also
branches to finished_sending_ctrl.

With or without a DATA stage, the CTRL trans-
action ends with the ACK stage, which is effectively
a zero-length DATA transfer in the opposite direction
from the main CTRL DATA transfer. CTRL transac-
tions with no DATA stage are counted as if they were
writes for this purpose, so the ACK stage in such a

case is a read. The code for this stage is very similar
to the DATA stage code, just with different length
calculation because the length is known to be zero,
and the special handling of USB’s DATA0/DATA1
handshake bit required for the ACK stage. Then it
falls through to finished_sending_ctrl.

The finished_sending_ctrl label wraps up han-
dling any of the stages of the CTRL transaction.
It sets the UF_SENT_CTRL and UF_BUSY flags
to indicate that a CTRL transaction has been sent
in this frame (so no more are allowed) and that
a transaction is currently in progress. Depend-
ing on conditional-assembly directives, it resets the
UF_BUSY watchdog and sends the test point GPIO
pin high. Both these measures are intended for de-
bugging issues with the scheduling of when the USB
subsystem goes or stays busy. Then it returns, ending
send_next_token.

Transactions other than CTRL transactions
are necessarily INTR or BULK transactions, be-
cause we do not support isochronous endpoints.
Both of these are handled starting from the label
try_sending_intr_bulk. As with CTRL, this code
starts by consuming a token from TOKEN_STORE
and aborting if there are none. From there, the code
is very similar to that used for CTRL DATA. It finds
a block of the buffer to send or receive (one maximum-
length packet or the rest of the buffer, whichever is
less), sets up the BDT entry to point at that block,
saves the EP and IRP pointers, and sends it to the
hardware. Then it branches back to share part of fin-
ished_sending_ctrl, setting UF_BUSY and option-
ally resetting the watchdog and sending the test point
GPIO high before returning. The differences be-
tween sending and receiving, and betweem INTR and
BULK, are small enough that the same code can han-
dle all four possibilities with just a few conditional-
skip instructions to handle the differences.

Multiplex ISR
The PIC24 USB hardware includes a dedicated in-
terrupt controller of its own that multiplexes all the
USB-related interrupts onto a single interrupt of the
main PIC24 interrupt controller. So the ISR for that
interrupt has to look at the hardware registers to fig-
ure out which interrupt source actually caused the in-
terrupt – potentially many, because multiple sources
could be active simultaneously.

The ISR starts by saving registers W0–W5, ac-
knowledges the PIC24 interrupt (as is required in
all PIC24 ISRs), and then proceeds to examine each

79

of the interrupt sources of interest to the low-level
driver. The section for each interrupt source starts
with local label “6:”; it tests the relevant bits in the
hardware registers for whether the source is enabled
and requesting an interrupt, and if not, skips to the
next “6:” using the name “6f.” If the interrupt source
is detected and handled, then the section will nor-
mally fall through into the next section so that mul-
tiple interrupt sources can be handled in a single call
to the multiplex ISR.

Note that interrupt-request bits in the USB hard-
ware’s dedicated interrupt controller work a little
oddly: to clear them, we must write a 1 to the bit
position (usually in the U1IR register). It may not
be safe to use bset on U1IR because that works by
reading the register value, setting the bit, and writ-
ing the changed value – so if other bits are 1, those
may also be cleared by bset. (I write “may” because
I have not tested this expected misbehaviour on real
hardware.) The safe and recommended thing to do
for clearing a bit in U1IR is to write the register with-
out reading it, such as with mov W0, U1IR, using a
constant value that is 1 in exactly the bit position(s)
one wants to clear. This “write 1 to clear” behaviour
is distinct from that of interrupt-request bits in the
main PIC24 interrupt controller, which are simply
register bits that can be cleared normally.

Attach The attach interrupt comes in when the user
inserts a USB device. Turning on the USB hardware
with a device already inserted also causes this inter-
rupt. And, as semi-documented by Microchip, the
attach interrupt is level triggered, which means that
it will happen again as soon as it is acknowledged, if
the device is still attached and the interrupt is still
enabled. Unlike PIC24 interrupts in general, which
only need to be acknowledged by clearing the inter-
rupt bit, the level triggered attach interrupt needs to
be fully disabled when the firmware records that the
device has attached, and that must happen before
acknowledging the interrupt.

Accordingly, the handler for the attach interrupt
sets the UF_ATTACHED bit in USB_FLAGS for
reference by the foreground; turns off the attach in-
terrupt, acknowledges both the attach and detach in-
terrupts (to guard against contact bounce and spu-
rious detaches that may have come in since the last
state change), and then enables the detach interrupt.

If the LEDS_ON_USB_ATTACHED debugging
symbol is set, then the code also clears bits 7 and
9 of LATB, to turn the front-panel LEDs red. It is

assumed they were already turned on, by clearing the
corresponding TRISB bits, by some other code.

Detach The detach interrupt is handled very much
like the attach interrupt. Although Microchip does
not explicitly document this fact, detach is another
level triggered interrupt that must be fully disabled
before being acknowledged. The code does the oppo-
site steps from attach: clear UF_ATTACHED, dis-
able detach interrupt, acknowledge both attach and
detach interrupts, and enable attach interrupt. If
LEDS_ON_USB_ATTACHED is set, it also turns
the front-panel LEDs green.

Start Of Frame The SOF interrupt happens at
1 ms intervals whenever SOF/keep-alive generation is
turned on, which is all the time when a device is at-
tached and in normal operation. This interrupt actu-
ally happens a little before the SOF (for full speed) or
keep-alive (for low speed), just at the moment when
there is no longer enough time to send a packet with-
out the packet colliding with the SOF or keep-alive.
Paradoxically, that is considered the very best time to
tell the hardware to send a packet, because it means
the hardware will hold onto the packet and then send
it at the first safe opportunity, immediately after the
SOF or keep-alive, without a gap. In combination
with things like ping-pong mode (not used in the Gra-
cious Host), having the interrupt come in when the
bus is not available helps to maximize throughput.
Using an interrupt that only came in when the bus
was idle as the stimulus for sending a packet would
introduce a delay, with the bus remaining idle, while
the firmware prepared the packet; but the time pres-
sure on the firmware to get the packet ready for the
hardware is alleviated if the firmware is working while
the hardware would be unavailable anyway.

After acknowledging the interrupt, the SOF in-
terrupt handler calls handle_1ms_tick, which is in a
subroutine so it can be reused by the On The Go 1 ms
interrupt handler below, and described in the docu-
mentation for that handler. It raises the test point
GPIO pin if PULSE_PIN14_ON_SOF is set; that
debugging symbol is of some use in providing an oscil-
loscope trigger for inspecting transactions on the USB
bus. Then it clears the UF_SENT_CTRL bit in
USB_FLAGS, to allow a new CTRL token to be sent
now that we have a new frame, and resets the cur-
rent pointer into the endpoint linked list to the start
of the list. Finally, it branches to send_next_in_isr,
which calls send_next_token and then ends the ISR.

80

If there are other interrupt sources remaining, they
go unhandled in this pass through the ISR, but as
soon as it returns, the unhandled interrupt sources
will trigger the ISR to run again.

On The Go 1 ms The USB hardware supports a sec-
ond 1 ms interrupt called the “On The Go 1 ms in-
terrupt.” Its timing seems to be less accurate than
the SOF interrupt, and the two drift relative to each
other. However, the On The Go 1 ms interrupt can
be turned on and off at any time, whereas the SOF
interrupt only happens when SOF/keep-alive gener-
ation is turned on. SOF/keep-alive generation needs
to be turned off sometimes, and the USB session han-
dler wants to use a millisecond timing interrupt even
when SOF/keep-alive generation is off, so there is a
need to use the On The Go 1 ms interrupt too. The
firmware switches between them, using the SOF in-
terrupt for timing when it is turned on, and the On
The Go 1 ms interrupt when the SOF interrupt is
turned off.

After confirming that the SOF interrupt really is
turned off, this handler calls the handle_1ms_tick
subroutine, which is shared with the SOF handler
and written inline as a star-section at this point in
the source code. It does all the recurring tasks needed
per millisecond by the USB driver’s timing features.

• It sets the SI_1MS flag in
SOFT_INT_FLAGS, which is used by
USB_WAIT to count millisecond interrupts in
the foreground.

• It decrements the millisecond counter used by
USB_LOOP_WAIT.

• If UF_BUSY_WATCHDOG_TIME is defined
to a positive value, it checks whether the hard-
ware and firmware are both reporting “busy”
status; if so, decrements the watchdog timer;
and if the timer hits zero, resets the proces-
sor. Some bugs can cause the bus to lock up
in “busy” status more or less permanently, and
this watchdog if enabled allows for a chance of
recovering from such an occurrence.

• It adds TOKEN_ALLOWANCE to TO-
KEN_STORE, to permit a few more bulk polls
for drivers that use the token store mechanism.

Error The handler for the USB error interrupt is
minimal: it just clears the interrupt, and clears the
UF_BUSY flag (lowering the test point GPIO pin if
PULSE_PIN14_ON_BUSY is defined), and jumps
to the after_transfer_complete label, which skips

past other handling of the just-completed transac-
tion. This behaviour will result in the transaction
being retried next time the ISR has a chance to run
through the endpoint list.

Shared transfer-complete code The transfer com-
plete interrupt occurs after a token has been sent and
possible response collected, whether it was successful
or unsuccessful. The code for this interrupt decodes
how the token ended and determines what to do next,
based on the current state of the larger USB trans-
action and what type of transaction it is.

First, it collects the current value of the U1STAT
regiser (saying how the token ended) before acknowl-
edging the interrupt, because the hardware is free to
rewrite that register as soon as the interrupt has been
acknowledged. This value is used only to determine
whether the recently-completed token was a “trans-
mit” or “receive” token, determining which BDT en-
try is relevant. It finds that entry, confirms that its
UOWN bit has been passed back to the software, and
extracts the saved EP and IRP addresses from the as-
sociated variables. The endpoint number of the token
as reported by the hardware is checked against the
one in the EP data structure; if they do not match,
the token may represent left-over bus traffic from an
earlier transaction, and is discarded.

Then the code collects the PID value from the
BDT entry, which represents the result of the the
token. The values PID_ACK, PID_DATA0, and
PID_DATA1 all represent a basically successful to-
ken and are handled the same. In these cases, the
EP’s EPF_DATA1 flag bit gets toggled (meaning
that after DATA0 we will expect DATA1 next and
vice versa) and the IRP’s fill point gets updated for
the newly-transferred bytes (zero being an allowed
number of new bytes, typical of ACK packets).

Then there is some conditional logic to sepa-
rate the cases. On CTRL transactions, if we have
sent the ACK then the transaction is done and we
jump to return_irp_to_foreground. Otherwise, if
all bytes have been transferred, or if the recent
packet was shorter than maximum length∗ and it
was not the initial eight-byte SETUP packet, then
it is time to send the ACK, and we set the IRP’s

∗An earlier version incorrectly checked for the packet to
be exactly zero length to end the transfer, and some devices
will send a zero-length packet after every transfer, but the
standard allows the device to consider the transfer completed
by any packet shorter than maximum length, so the earlier
code could fail on transfers that did not fill a whole number of
maximum-length packets.

81

IRPF_ACK flag bit to indicate that. Finally on
any CTRL transaction that is not yet complete,
whether or not IRPF_ACK was set, we jump to fin-
ished_incoming_packet, which will try to send the
next packet of the transaction (either another data
packet, or the ACK).

If the transaction was not a CTRL transaction,
is not complete (not all bytes transferred yet), and
we did not see a short packet, then we jump to fin-
ished_incoming_packet to attempt sending or re-
ceiving more. Non-CTRL transactions that have
filled their buffers, or that have completed the
transmission of a zero-length packet in either di-
rection, will end without further handshaking; in
these cases the code jumps or falls through to re-
turn_irp_to_foreground.

The return_irp_to_foreground label is reached
by several branches of the logic and represents the
end of a transaction. It nulls out the pointer in the
EP to the IRP (because this IRP is no longer active),
and clears the IRP’s IRPF_UOWN bit to return re-
sponsibility for that IRP to the foreground. Then
it branches to finished_incoming_packet to look for
more work to do. That concludes handling of basi-
cally successful PIDs (ACK, DATA0, and DATA1).

The NAK PID is next. USB specifies this PID
for several cases that basically amount to a trans-
action temporarily failing. NAK should result in
at least a limited number of retries, unlimited for
some transactions. Accordingly, we check the EP’s
EPF_INFINITE_NAK flag and if it is set, branch to
finished_incoming_packet to make another attempt.
Otherwise, we increment the EP’s NAK counter.

On an INTR input transaction, NAK is actually
a successful result ending the transaction (it means
there is no new data, without error), so in this case
the code just branches to return_irp_to_foreground
to record the end of the transaction. In other cases,
there is logic to choose a hardcoded limit on number
of NAKs to retry before declaring the transaction un-
successful: 3 for INTR (necessarily only INTR output
because input was already handled), 200 for CTRL,
and 20000 for BULK (although BULK would nor-
mally use EPF_INFINITE_NAK and not reach this
point). If the limit is not reached, there is a branch to
finished_incoming_packet, which will retry. Other-
wise, we set the error flag for the IRP and record
the ERR_TOO_MANY_NAKS error code in the
EP before jumping to return_irp_to_foreground.

All remaining PIDs are treated as errors. In
these cases the code stores an error code that in-

cludes the incoming PID in the EP for possible ex-
amination by the foreground, sets IRPF_ERROR,
and clears IRPF_UOWN, before falling through to
finished_incoming_packet.

The finished_incoming_packet label is reached
eventually by all cases of handling the completion of
a packet, whether it completed the entire transaction
or not. From this label it sets W2 to the current end-
point (so that retries will start on this endpoint first)
and then calls send_next_token to attempt retrying
the current token or doing other work on other end-
point(s) as appropriate.

Finally, at the end of the ISR and the usb.s file,
the test point goes low to represent the end of the in-
terrupt if PULSE_PIN14_ON_SOF is enabled, and
the code restores registers and returns. The various
RETFIE_ convenience labels are defined here for use
by other ISRs that may want to restore low-numbered
registers before returning.

Maintenance codes
The USB low-level driver defines two maintenance
codes by assembling table entries in a section named
mtbl, which the linker will gather together to create
the master table of maintenance codes used by the
typing-keyboard driver. See the discussion in that
driver’s chapter for more about maintenance codes.
The USB driver’s codes are as follows.
1240 Simulate insertion of a USB hub, which results

in the Morse “H” error display.
3627 Simulate insertion of an unsupported non-hub

USB device, which results in the Morse “D” er-
ror display.

82

MIDI backend driver (midi.s)
The MIDI backend driver in midi.s has the job of
interpreting MIDI messages as instructions to drive
the module’s outputs (DACs and trigger/gates) in
musically appropriate ways. It is split into a sepa-
rate module so that it can be shared by more than
one of the per-device USB drivers: both the USB-
MIDI driver (usbmidi.s) and the typing keyboard
driver (qwerty.s) are capable of generating MIDI mes-
sages, and some future driver for other controller
hardware might well do the same. Having a single
MIDI backend ensures consistent behaviour among
these drivers.

Because this module runs while others do, and
those other modules expect to have control of the
common data area, the MIDI backend’s state goes
into permanently-reserved (static) RAM variables de-
clared in the .bss assembler section. The variable
declarations in the source file are bracketed by the
labels start_clear and end_clear, and a repeat loop
in MIDI_INIT fills them with zeroes when the driver
starts up.

For the most part, the MIDI backend operates on
the assumption that only one MIDI channel will be
used at a time, but at least between channels 8 and 9,
potentially between other pairs of channels designed
to work together, it is necessary to keep separate data
for pitch bend and note in progress. The source
code defines a block of (currently) six bytes con-
taining the variables mono_data, pitch_bend_amt,
and pitch_bend_range, which is duplicated for even
and odd channel numbers. The MD_BLOCK_SIZE
symbol is a constant set to the size of the dupli-
cated block. The find_mono_data helper routine
will point W6 at the start of this block appropriate
to the current channel when processing a MIDI mes-
sage, and code to access these variables indexes using
W6. Thus, pitch bend sent in any even channel will
affect all even channels but no odd channels, and vice
versa.

Driver initialization
Other modules that will use the MIDI backend call
MIDI_INIT during their startup, to both configure

the hardware and initialize the backend’s internal
state.

The hardware configuration used by this driver
is summarized in Table 2 on page 11. It includes
Timers 4 and 5 configured as a single 32-bit timer,
referred to as Timer 4/5. This 32-bit timer counts
at a 1:8 prescaler ratio from the instruction clock
(therefore 2 MHz) and resets at the MIDI 24 PPQN
rate. More information on the tempo clock is in the
“tempo timing” section below. One thing to note in
the initialization is that the tempo clock starts out
effectively turned off, by forcing the reset time to the
longest possible. That is 232 counts per reset, which
works out to about 35.8 minutes per reset, 14.3 hours
per quarter note, and 0.0012 BPM; but in fact, code
in MIDI_BACKGROUND prevents the tempo timer
from advancing at all, even at this slow rate, when it
is meant to be stopped.

Also under MIDI_INIT, the backend’s RAM vari-
ables are all initialized (most of them to zero), and
output compare units 3 and 4 are set up to gener-
ate pulses for interrupt purposes even though they
will not be PPS mapped to digital outputs. Unlike
units 1 and 2, which will be reconfigured on the fly
depending on the MIDI channel, units 3 and 4 retain
a single configuration all the time the backend is in
use.

The initialization ends with a tail call to
START_CRC to prepare the CRC32 hardware for
its use in pseudorandom number generation.

Background processing
Higher-level code that uses the MIDI backend is ex-
pected to call MIDI_BACKGROUND frequently, at
least once per millisecond, to handle ongoing process-
ing that must happen between other API calls. For
example, in arpeggiator modes the backend may need
to change the output note even though no new MIDI
messages have been received.

Most of the logic in MIDI_BACKGROUND is
gated by the SI_1MS flag in SOFT_INT_FLAGS,
which gets set once per millisecond by the USB mul-
tiplex interrupt handler and then reset in this code.

83

If the SI_1MS flag is not set, the code branches past
the once-per-millisecond tasks, to the timer-stopped
and PRNG handling.

Other code in the backend can set flags in
the internal background_flags variable to request
that things be done on the next millisecond. Set-
ting BF_EAT_1MS requests delaying all other such
tasks; all that happens is clearing that flag and skip-
ping past the other per-millisecond code. Any other
flags will be handled on the next SI_1MS. This “eat
a pulse” facility is used by MIDI channels with gate
outputs to handle dropping the gate voltage briefly
to signal the new note, if a new note starts while an
old note is still in progress. The per-channel code
drops the gate when the new note is detected, and
then sets flags for the background to bring it back up
after about a millisecond.

When there is an SI_1MS flag detected
without a BF_EAT_1MS flag, the other per-
millisecond code runs. This code handles the
flags BF_RAISE_GATE1, BF_RAISE_GATE2,
and BF_RAISE_CV2, which raise the CVs on the
corresponding output jacks.

The next per-millisecond task is to maintain
the BEAT_FLASH variable, which is a soft timer
in a slightly unusual format. The high byte of
BEAT_FLASH counts down at a rate of one count
per millisecond. It is one-shot, as far as the code at
this point is concerned; it will not be further mod-
ified once it reaches zero. But the low byte of the
variable is set to 1 whenever the high byte is nonzero.
Doing that test here instead of elsewhere saves pro-
gram memory by allowing the use of bit test and
skip instructions everywhere else the value is tested.
BEAT_FLASH is used by the typing keyboard driver
(in qwerty.s) and by the MIDI channel 12 code (in this
file), to flash LEDs on the beat. Code elsewhere in
this file sets it to the value 0x5001 at the start of each
beat, requesting an 80 ms flash. Using a soft timer for
this purpose makes it easier to keep the value correct
in external-clock situations, as well as saving hard-
ware timer resources for higher-priority uses.

The final per-millisecond task is a call to
per_channel_background, which is split into a
subroutine so that it can branch to other sub-
routines and have them return properly into
the MIDI_BACKGROUND code. After calling
mono_data_from_recent, which extracts informa-
tion about the most recently-used MIDI channel into
W1 and W6, it gets the low bits of W1 and uses them
to index a jump table. Those low bits are the channel

number of the most recently-handled MIDI channel
message, with the usual MIDI convention that the
number really used by the computer is one less than
the number documented for users: 0x0 is Channel 1,
0xF is Channel 16, and so on. Depending on the
recent channel, the jump table either branches to a
per-channel background routine, or just returns im-
mediately for channels that have none. There is some
duplication in the jump table because a single back-
ground subroutine may do the work for more than
one closely related channel.

The rest of MIDI_BACKGROUND runs uncon-
ditionally, not only once per millisecond. It forces
the tempo clock to remain stopped when it should
be stopped: if at maximum period (technically, only
the high 16 bits of the period are checked against
0xFFFF), then the Timer 4/5 count value is forced
to the value 0x7FFF7FFF, basically halfway through
its count. Forcing it to this value prevents it from
ever overflowing and triggering the beat to advance.
Any real tempo once set will reduce the period to
much less than the maximum, at which point this
code will allow the clock to run.

The very end of MIDI_BACKGROUND is a tail
call to PRNG_HASH_TIMERS, which keeps the
pseudorandom number generator updated. Because
this call indirectly depends on interrupt timing from
external events, there is always a little bit of uncer-
tainty in when it will happen relative to the count
values of Timers 3, 4, and 5, and that uncertainty
will accumulate in the PRNG state. Even if we just
reset Timers 4 and 5 in the tempo-stopped code, their
fixed values will not reduce the uncertainty that ar-
rives through the Timer 3 value.

This code defines another entry point named
MIDI_BACKGROUND_SAFE, whose purpose is to
call MIDI_BACKGROUND while explicitly preserv-
ing working registers W0–W7 on the stack. The other
working registers are not expected to be touched by
the MIDI background code; in principle, this call is
expected to preserve all working registers. It is used
inside USB waiting loops, where we may want to call
the MIDI background with minimal impact on the
calling code.

The MIDI message and byte streams
MIDI messages may come to the backend driver as
complete messages, or as a stream of single bytes; and
if they are single bytes, then they may be subject to
running status.

Here is a quick primer on related MIDI concepts.

84

The MIDI signal consists of a stream of messages,
each of which is one or more 8-bit bytes. The first
byte is called the status byte and it always has its
high bit set to indicate that it is such. Additional
bytes in a message, if any, are called data bytes and
have their high bits cleared.

There are different kinds of messages identified
by bits 4–6 of the status bytes. Messages that do not
have all those bits set (status byte ranging from 0x80
to 0xEF) are called channel messages. Each channel
message will be in one of sixteen channels, indicated
by the low nybble of the status byte. A channel mes-
sage always includes one or two data bytes. Other
messages (those with all four high bits of the status
byte set, status byte from 0xF0 to 0xFF) are called
system messages and are global to all channels. Those
are split into system common and system real-time
categories depending on the value of bit 6. In the
case of system messsages, the low nybble of the sta-
tus byte gives additional information about the type
of the system message instead of specifying a chan-
nel. System messages often have no data bytes at
all, but some kinds have one or more, and they may
have an unlimited number of data bytes in the case
of vendor-defined system exclusive (sysex) messages.
Sysex messages start with status byte 0xF0 and en-
compass all further data bytes until terminated by
status byte 0xF7, which might be thought of as a
separate “end of sysex” message.

Having the high bit set on status bytes and cleared
on data bytes is supposed to help mitigate errors. If
a MIDI device encounters data bytes without hav-
ing received a status byte, it is allowed to ignore the
data bytes. That way, in cases where bytes are lost
either due to noise or because a cable was recently
hot-plugged, at worst the receiving device loses the
message currently in progress. It can synchronize at
the byte level and receive future messages correctly,
starting from the next status byte.

But there is an exception which reduces this er-
ror recovery ability in exchange for better through-
put in some common use cases: the running status
feature. In some cases, devices that send MIDI mes-
sages are allowed to skip sending the status byte and
send only the data bytes for a channel message. The
most recently received channel message status byte
is called the running status and is reused for any ex-
tra data bytes received. Any channel message (status
bytes 0x80 to 0xEF) sets the running status for future
data bytes. Any system common message (which are
those with status bytes 0xF0 to 0xF7) clears the run-

ning status state; the next message will require an ex-
plicit status byte. And any system real-time message
(which are those with status bytes 0xF8 to 0xFF) is
supposed to have no effect on running status at all;
any existing running status remains in effect. System
real-time messages are all single-byte messages with
no data bytes of their own, so there is no ambigu-
ity about whether a data byte received after one of
these status bytes should be attached to the system
message or to the running status. A system real-time
message is even allowed to occur in the middle of a
channel message.

Running status is relevant to the use case where a
controller is mostly sending notes on a single channel,
which can all have the same status byte. Although
MIDI defines different status byte values for note on
and note off messages, it also allows controllers to
send a note on with zero velocity to have the effect of
a note off, specifically so that the controller can keep
all the on and off messages under a single status byte
subject to running status. MIDI senders almost uni-
versally do send zero-velocity note ons instead of ex-
plicit note offs, to the point that some non-compliant
receivers depend on it and cannot properly handle
explicit note off messages.

It should be borne in mind that MIDI was spec-
ified in the early 1980s, and classic DIN MIDI has
a data rate of 31.25 kbps. It was necessary both to
conserve bits, and to have the scheme be easily de-
codable in as few gates of hardware logic as possible.
The state machine and schematic for an implementa-
tion in 74LS logic chips or similar almost draw them-
selves given the above description of how the bytes
are supposed to be handled.

USB-MIDI is based on 32-bit packets instead of
8-bit bytes, and translates the messages two ways,
both of which need to be supported by receivers like
the Gracious Host. A single message (except longer
sysex messages) can be packed into a single 32-bit
packet. In this case, one complete message, includ-
ing a required (not “running”) status byte and not
interrupted by a system real-time message although
it could itself be a system real-time message, is in-
cluded in the packet starting at the second byte of the
packet. The first byte contains the CIN field, which
says what kind of message this is, implicitly specfying
the number of data bytes. The first byte of the 32-bit
packet also includes a four-bit “cable number” which
we and many other implementations ignore but which
in theory is supposed to allow for 16 separate sets of
16 MIDI channels each to be multiplexed on a sin-

85

gle USB endpoint, even beyond the multiplexing also
allowed by having multiple endpoints. What hap-
pens if the CIN field does not agree with the status
byte is not specified; that is not supposed to happen.
Up to two data bytes are packed into the third and
fourth bytes of the 32-bit packet, with any unused
bytes padded by zeroes.

For sysex messages, which may be of arbitrary
length not fitting in the three-byte payload of a 32-
bit USB-MIDI packet, there are several CIN values
set aside to indicate how many bytes are valid and
whether the sysex message will continue into one or
more additional packets. The Gracious Host does not
use sysex messages and need not handle these cases
in much detail.

The other way USB-MIDI can translate messages
is one byte at a time, with a special CIN value indicat-
ing that this 32-bit packet carries just an uncatego-
rized single byte. In this case the receiver has to pro-
cess it as a single byte of an ongoing MIDI stream, in-
cluding all handling of running status cases. Senders
are free to send both kinds of USB-MIDI packets.

Message and byte stream parsing
The Gracious Host’s MIDI backend provides two en-
try points that closely correspond to USB-MIDI’s
concept of parsed messages and unparsed single
bytes. The USB-MIDI driver calls these as appro-
priate for the packets that come in, and other drivers
that generate MIDI messages (in particular, the typ-
ing keyboard driver) can also call them. Usually,
drivers that do not actually receive a stream of sin-
gle bytes from somewhere else would be expected to
call the parsed-message API, as more convenient at
both ends than having to encode and decode a byte
stream.

MIDI_READ_BYTE is the entry point for han-
dling a single byte, which should be passed in in the
low byte of W0. The logic here is a little convoluted
because of the need to handle multiple cases. First,
it checks for whether the incoming byte is a status
byte. Assuming it is, it checks for high nybble equal
to 0xF, which indicates a system message. System
messages short-circuit to MIDI_READ_MESSAGE.
Although some system messages will have data bytes,
the only ones we actually process are single-byte mes-
sages without data, and the additional processing to
ignore future data bytes, if appropriate, is handled
later. Other status bytes are channel message sta-
tus bytes (0x80 to 0xEF) and those are all saved in
the running_status variable. All channel messages

require one or two data bytes.
The variable streamed_bytes is used as a buffer

for data bytes that are already received, or expected
to be received. The low byte is the first data byte;
the high byte is the second; and a byte value is
set to 0xFF to indicate that we still need to fill it
in before processing the message, bearing in mind
that data bytes always have their high bits cleared
and so the value 0xFF cannot collide with any valid
data byte. Upon receiving a channel message sta-
tus byte, streamed_bytes is set to either 0x00FF
or 0xFFFF depending on whether the status byte
calls for one or two data bytes to follow. Some
of this code (starting from reinit_streamed_bytes)
will be reused later. Status-byte processing by
MIDI_READ_BYTE ends with the step of setting
streamed_bytes.

When MIDI_READ_BYTE receives a data byte,
it branches to read_data_byte, which checks the
value of running_status. If there is none (detected
by zero value; only values 0x80 to 0xEF are valid
for running status in effect), then it discards the in-
coming byte. Although MIDI allows some system
messages to have data bytes, the Gracious Host only
cares about data bytes attached to channel messages.
Then the incoming data byte is written into either the
first or second byte of streamed_bytes, depending on
whether bit 7 of the word is set (indicating that the
first data byte was not previously received). After
that, there is a check of bit 15. If bit 15 is cleared,
then either the status byte only required one data
byte (so streamed_bytes was initialized to 0x00FF)
or it required two data bytes and we just got the sec-
ond one. If bit 15 is set, then we are still waiting for
a second data byte, and MIDI_READ_BYTE ends.

If the code proceeds past that point, it means
that a complete channel message has just been re-
ceived, consisting of status byte now saved in run-
ning_status and one or two data bytes now saved
in streamed_bytes. These values get copied into
W1 and W2 to prepare for the fall-through into
MIDI_READ_MESSAGE, and a few more instruc-
tions including a call to reinit_streamed_bytes reset
streamed_bytes to require the same number of data
bytes again, so that a future message coming in under
running status will be properly handled.

The MIDI_READ_MESSAGE entry point han-
dles a single complete message, either as an
API for other code to call, or internally when
MIDI_READ_BYTE has detected a complete mes-
sage. It takes the (required, not running) status byte

86

in the low byte of W1 and any data bytes in W2 (little
endian, low byte first). It may trash W0–W8.

MIDI_READ_MESSAGE starts by confirming
that bit 7 of W1 is set; otherwise the status byte is
invalid. It then does some cleanup, clearing the high
byte of W1 and bits 7 and 15 in W2, so that other
code can assume zeros in these locations. It calls
find_mono_data, which sets W6 to point to some
per-channel data used by channels that operate in
pairs, and goes through a jump table indexed by bits
4–6 of the status byte. Further processing depends
on the type of message: note off, note on, polyphonic
key pressure, control change, program change, chan-
nel pressure, pitch bend, or system. Some of these,
like say “channel pressure,” are not really used by the
Gracious Host; their jump table entries just branch
to save_rstatus, which will store the current status
byte as a running status but do nothing else. The
“note off” entry is not a jump but a clr.b instruction
that forces the second data byte (velocity) to zero
and then falls through into the “note on” entry, so
that note off is equivalent to zero-velocity note on at
a very low level in the code.

Handling of system messages starts immediately
after the jump table with a check for system common
messages (status byte 0xF0 to 0xF7), which when de-
tected will clear the running_status variable. They
are otherwise ignored. Then it tests specifically for
status byte 0xF8 (system real-time “timing clock”),
which results in a call to MIDI_TIMING_CLOCK;
and status byte 0xFA (system real-time “start”),
which results in a call to MIDI_TIMING_START.
Those are APIs to the tempo clock, which are also
global symbols available to other code.

There follow some subroutines to handle other
cases. The save_rstatus label is called or branched to
from several places to save W1 to running_status and
then return. The do_note label uses a jump table to
handle note on and note off messages depending on
the channel. Each implemented channel has a sub-
routine named like XXXX_note for handling note on
and off messages, and the unimplemented ones just
have return instructions in the jump table. Some
closely-related channels share such subroutines, do-
ing their own internal handling of the exact channel
number.

The do_cchange subroutine is currently unimple-
mented, identical to save_rstatus, but it is planned
that this will eventually do the handling needed for
the pitch bend range Registered Parameter Num-
ber (RPN), which will require some additional state-

machine logic because writing to an RPN involves
multiple MIDI messages. The do_pbend subroutine
is already implemented, though without adjustability
of the bend range. It just decodes the low seven bits
of each data byte into a single 14-bit unsigned num-
ber, then offsets it into a 16-bit signed number and
stores that in the (even or odd, depending on channel
number) pitch_bend_amt variable.

The helper routine find_mono_data is used wher-
ever code needs to access the few variables that are
split between even and odd channels. It puts a
pointer in W6 to the start of the appropriate block
based on a channel number (MIDI format, Channel 1
is actually value zero) in W1. The additional en-
try point mono_data_from_recent is just the same,
but automatically sets W1 from the recent_channel
variable, saving an instruction in the caller for this
common use case.

There follow several chunks of code that are
specific to particular channels, entered through
the XXXX_note and XXXX_bk labels from the
do_note and per_channel_background jump tables
respectively.

Channel 1: mono CV/gate with velocity
and square wave
Channel 1 handles a single note at a time
(monophony), with the pitch and velocity values con-
trolling the analog output voltages, and gate and
a square wave sent to the digital outputs. Each
new note replaces any other that might have been
in progress at the time. Although it does not directly
use the tempo clock, it watches for rising edges on
the input jacks and uses them to set the tempo clock
for possible use by other channels.

The code starting from mono_sq_note handles
note on messages (including note off messages rewrit-
ten to note on, velocity zero) for MIDI Channel 1. It
starts with a call to use_comparator_int, a helper
routine located in the Channel 12 code that turns
on the comparator interrupt, but clears any pend-
ing comparator interrupts (both in the hardware and
in SOFT_INT_FLAGS) if the channel number has
changed since the last call. Next it makes a call to
pps_remap (described below) to connect the left dig-
ital jack to GPIO and the right to output compare 2,
which will be used to generate the square wave.

It sets the colour of the front-panel LEDs to green
and checks whether the velocity of the note is zero,
indicating a note off. Note off is handled by a jump
to mono_sq_noteoff.

87

Assuming note on (nonzero velocity), the code
saves the current data bytes to the mono_data vari-
able for the current channel; W6 was pointed there
by the message-dispatch code earlier.

The note-on code toggles the gate output im-
mediately, but also sets the BF_EAT_1MS and
BF_RAISE_GATE1 flags, so that 1–2 ms later, the
background processing will raise the gate. These
steps handle both cases of a possibly-existing previ-
ous note. If no earlier note was in progress, then the
gate goes up immediately (with the toggle) and when
the later background processing happens it has no ef-
fect. If there was an earlier note in progress, then the
gate drops briefly at the start of the note, allowing
envelopes and such to retrigger, but the background
processing brings it up again quickly. The case of
an extremely brief note that starts and ends within
less than 1–2 ms is not really expected in real musi-
cal use, but should it occur, the note off processing
described below will clear the BF_EAT_1MS and
BF_RAISE_GATE1 flags, preventing the gate from
going up again after the end of the ultra-brief note.

After toggling the gate and setting the flags, the
note on code turns on the front-panel LEDs, saves
the velocity byte, and sends the note number to
the tune_dac1_oc2 subroutine, which applies pitch
bend, sends the pitch control voltage to the left ana-
log output, starts OC2 oscillating at the correspond-
ing frequency, and also checks the input jacks for
tempo-timing events. That subroutine is shared with
the background processing.

The seven bits of velocity data get converted into
12 bits for the DAC by repeating the high five bits
to fill in the low ones (basically equivalent to mul-
tiplication by 4095/127) and sent to the right-side
DAC with a tail call to WRITE_DAC2, concluding
the note-on processing. Note that velocity uses un-
calibrated DAC output, but the 12-bit DAC should
be linear to better than the 7-bit precision of MIDI
velocity even without calibration adjustments.

The background processing code at mono_sq_bk
will be called once per millisecond as long as the most
recent channel message was received on Channel 1. It
is just an extra instruction to retrieve the saved data
bytes from the mono_data variable before starting
the shared code at tune_dac1_oc2. At that label
is a call to calc_bent_note, code shared with other
channels that applies the current pitch bend value to
find the semitone-and-fraction note number. It is be-
cause of possibly changing pitch bend over the course
of a note that this channel needs to keep updating the

pitch CV in the background processing at all. The
calc_bent_note subroutine is included inline in the
source at this point, using a star section.

Next is a call to CALC_OSC_TUNING from
firmware.s, which finds the period value to use in
the output compare hardware for this MIDI note.
The code sets output compare 2 to the calculated
period, sends the note number to the DAC with
NOTENUM_TO_DAC1 from calibration.s (which
applies the appropriate calibration adjustments), and
then falls through to tempo_from_comparators to
keep the tempo clock updated.

The tempo_from_comparators code is shared
with other channels that use the digital inputs for
updating the tempo clock. In Channel 1 and any
others using this code, rising edges on the right dig-
ital input are treated as “tap tempo,” also usable
as a 1 PPQN clock input. The code checks the
SI_CM1 flag in SOFT_INT_FLAGS, which will be
set by the comparator ISR on rising edges of the
right digital input; if this flag is detected, it calls
MIDI_TEMPO_TAP. Similarly, rising edges on the
left digital input set the SI_CM3 flag and this code
will call MIDI_TIMING_CLOCK, registering the
edges as a 24 PPQN clock.

The last chunk of code for Channel 1 is
mono_sq_noteoff, invoked by the note on code when
it detects zero velocity. This code first checks whether
the note number that is ending matches the most re-
cent one to begin, as saved in the mono_data vari-
able. Without a match, the note off will be ignored.

Otherwise, it saves the new data bytes, lowers the
gate output, clears the BF_RAISE_GATE1 flag so
that an extremely short note (less than 2 ms) will not
re-raise the gate in subsequent background process-
ing, and ends by turning off the front-panel LEDs
(the left one explicitly, the right one with a tail call
to right_led_off). Pitch CV and the oscillator out-
put remain active even after a note off, to allow for a
decay tail after the end of the MIDI note. Even pitch
bend can still be updated, because the background
processing continues as long as Channel 1 had the
most recent channel message.

Channel 2: duophonic CV/gate
Channel 2 handles up to two notes simultaneously
(duophony, or two-note polyphony), with a gate and
a pitch CV for each. Which two notes play, when
the MIDI data indicates more than two, is deter-
mined by note stealing: a new note replaces the oldest
currently-playing note.

88

Pitch bend for Channel 2 affects both notes.
The duophonic_note subroutine, which handles

note on and off messages, starts by disabling the com-
parator interrupt. The digital input jacks are not
used in this mode. Then it calls pps_remap to set
both digital outputs to GPIO mode, and configures
the front-panel LEDs to be red. If the velocity is zero,
it branches to duophonic_noteoff to handle the note
off message.

In the note on case, several conditionals examine
the duo_side and duo_data variables to decide on
which side to play the new note. The duo_side vari-
able is a flag, nonzero if the left side was used most
recently. The duo_data variable is a two-entry ar-
ray where each word stores the two data bytes from
the note on message, first for the left and then for
the right. The conditionals send execution to duo-
phonic_right_noteon or duophonic_left_noteon ac-
cording to the following detailed rules.

• If the left side was most recently used (whether
currently in use or not), and the right is free,
then go to the right.

• Otherwise, if the left side is free, then go to the
left.

• Otherwise, if the right side is free, then go to
the right.

• Otherwise, which implies that both sides are
currently in use, go to the side that was not
most recently used.

The per-side note on code is basically the same
for the two sides. It stores the new note’s data
bytes to the appropriate entry of duo_side, and han-
dles the gate much the same way the monophonic
code did: gate toggle during the note on handler,
and BF_EAT_1MS and BF_RAISE_GATE1 or
_GATE2 to make sure the gate is high 1–2 ms later.
The LED gets turn on, and then the code tail calls
send_bent_to_dac1 or _dac2, which are defined in
the Channel 8/9 code and just call calc_bent_note
and write the result to the DAC.

The background processing for Channel 2 is in
duophonic_bk. It just calls send_bent_to_dac1
and send_bent_to_dac2 with the data bytes from
duo_data.

The note off code in duophonic_noteoff com-
pares the incoming data bytes against the stored
ones for the two sides to determine which note is
ending. “Neither” is a possibility, if the note now
ending was already replaced by a more recent note.
Then, on the appropriate side, it stores the updated
data bytes, lowers the gate voltage, turns off the

BF_RAISE_GATE1 or _GATE2 flag to handle the
case of very short notes, and turns off the LED on
the appropriate side.

Channels 3 and 4: quantize to MIDI
Channels 3 and 4 make the module operate as a quan-
tizer. Each of the two analog inputs is quantized
to the nearest note currently playing on the MIDI
channel, with the quantized voltage sent to the cor-
responding analog output. The digital outputs send
gates: high as long as any notes are held, but drop-
ping to zero when there are no held notes and for
about a millisecond each time the quantized output
voltage changes.

The difference between the two channels is that
Channel 3 quantizes to literally the nearest currently-
playing MIDI note number. Channel 4 quantizes to
the nearest note that is currently playing in any oc-
tave. For example, if the currently-playing MIDI
notes are 60 and 69 (Middle C and the A above it) and
the input voltage is 0.50V (equivalent to MIDI note
42), then Channel 3 will quantize to 2.00V (MIDI
note 60, the nearest note that is literally playing in
the MIDI data) but Channel 4 will quantize to 0.75V
(MIDI note 45, which is an A like note 69 and closer
to note 42 than the nearest C would be). Both these
channels are handled by substantially the same code,
with a few conditional sections to separate the cases.

As of this writing, pitch bend in the quantizer
channels is applied after quantization and regardless
of the quantization result. It is possible that some fu-
ture version of the firmware may attempt to do some-
thing more useful with pitch bend.

Note on and off are not separated. The code for
either message, at quantize_note, turns off the com-
parator interrupt (because the input jacks are being
used in analog mode) and sets the PPS mapping for
the output jacks to GPIO with a call to pps_remap.
Then it does a division on the incoming note num-
ber to find the octave (⌊N/12⌋, the integer quotient
from the division) and the note within the octave
(N mod 12, the remainder from the division).

The notes currently in playing the quantizer chan-
nels are recorded in the quant_notes array. Both
channels share this array, and it is structured as a
16-bit word per octave with the notes in the octave
indexing the bit positions, four bits unused at the
top of each word. The note on and off code uses the
quotient and remainder to find the appropriate bit,
and updates it for whether this was a note on or off
message. Then it ends.

89

The quantize_notenum subroutine does most of
the work of quantization. The background process-
ing will call it once for each side. This code expects
the unquantized input note, in semitone and fraction
format, in W0, and the currently-playing quantized
note in W4.

It starts by comparing W0 to W4 to see in which
direction it is likely to be adjusting the note. Depend-
ing on the comparison result, W1 is set to 0x0080 plus
or minus the value QUANT_HYSTERESIS set in
config.inc, to represent the boundary between semi-
tones. This hysteresis mechanism is intended to pre-
vent noise in the input, with an input voltage near
a quantization boundary, from causing a lot of un-
intended very fast notes. Once the measured volt-
age has crossed a quantization boundary, the bound-
ary effectively moves some distance in the opposite
direction, so the voltage must change by the width
of the hysteresis band again before it can cross the
boundary in the opposite direction. The value of
QUANT_HYSTERESIS for production firmware is
0x50, corresponding to a 62.5¢ hysteresis band or
about 5 mV, which is close to the ADC’s resolution
after calibration. The check in the code is for the di-
rection of adjustment to the nearest semitone rather
than to the actual quantization result (which is still
unknown at this point), but moving the quantization
boundary in this way actually only has an effect when
those two directions coincide.

Next, the code in quantize_notenum computes
the bitwise OR of the words in the array. This result
is a bit mask of which notes are playing regardless of
octave (pitch classes, to use the music-theory term),
relevant for Channel 4 although it is computed here
unconditionally. There follows a loop over the note
numbers from 0 to 127, to find the note number clos-
est (by absolute value of the difference in note num-
bers) to the input note, that is flagged as currently
playing. For Channel 3, this loop looks at the words
of the quant_notes array. For Channel 4, it goes
through the motions of computing the index into the
array, but then short-circuit code replaces the word
read from the array with the already-computed OR
value, so that a bit set in any octave in the array will
appear to the quantization loop as if it had been set
in every octave. The quantization result defaults to
note number 0 if no note was playing at all.

The quantize_notenum subroutine ends with a
tail call to mono_data_from_recent to get a pointer
to per-channel data (specifically, pitch bend) into
W6. That is needed in the code that calls quan-

tize_notenum and this is a convenient, space-saving
place to do it.

At set_quant_led is another helper subroutine,
for setting the LED according to the quantization re-
sult. It mostly uses data left in the working registers
by quantize_notenum, but is separated so that the
caller can pass in the LED bit number (7 or 9) for
the current side via W4. This code also sets the gate
output voltage.

The logic for set_quant_led first sets the LED
colour to red if the input and output voltage are in
the same semitone. Then it sets the LED’s lit or unlit
status: lit if some note was found by the nearest-
note search (indicating at least one note is currently
playing in the MIDI input), unlit otherwise. This
condition separates the code into a note on and a
note off case.

The note on and note off cases are treated much
like note on and note off in other channels. For note
on, the gate gets toggled, and then BF_EAT_1MS
and the appropriate BF_RAISE flag are set to re-
quest that the gate go high in the background pro-
cessing after a short delay. For note off, the gate is
lowered and the BF_RAISE flag cleared. That ends
set_quant_led.

The last chunk of code for the quantizer channels
is the background processing of quantize_bk, which
just repeats a few subroutine calls for the two chan-
nels: ADC1_TO_NOTENUM, quantize_notenum,
set_quant_led, send_bent_to_dac1, and then mu-
tatis mutandis for the other side.

Channel 5: arpeggiate up and down
Channel 5 arpeggiates the MIDI input notes, in in-
creasing and decreasing order of pitch on the two
sides. Much of this code is shared with the other two
arpeggiator channels, numbered 6 and 7. It accepts
tempo timing on the input jacks to set the tempo
clock, or follows the tempo clock setting from some
other source (MIDI timing messages or typing key-
board tap tempo). Arpeggiation is at one note per
MIDI “quarter note” time, though of course the clock
given to the module need not really be at the rate of
quarter notes in the musical context. It plays a new
note at the start of each beat, independently of the
timing of the MIDI note on messages; a note on not
close to the tempo clock will result in a delay before
the note starts playing on the beat, and the tempo
clock must be running at all for the arpeggiator to
produce output notes.

The analog outputs provide the pitch CVs, and

90

the digital outputs provide a gate and a trigger. The
gate is high for the first 7/8 of the beat time and
low for the rest. The left LED lights green when any
notes are held, and the right LED follows the gate,
lighting red for the first 7/8 of each quarter-note beat.
Pitch bend is applied when each note starts playing,
not continuously updated.

The arpeggiator channels store currently-playing
notes in arp_notes, which is basically an array-based
stack data structure of one byte per note, the vari-
able arp_note_count recording how many notes are
currently stored. The array is kept in sorted order by
pitch for Channel 5; in order of note entry for Chan-
nels 6 and 7. The note on and note off handler’s
main function is just to maintain arp_notes, with
the rest of the arpeggiation logic handled by MIDI
background processing.

A helper subroutine called arp_note_top does
basic setup needed at the start of the note on and
off handler for all three arpeggiator channels. The
arp_updown_note code starts with an rcall to this.
It calls use_comparator_int to set up the input jacks
for controlling the tempo clock, and pps_remap to set
the left digital output to GPIO (for the gate) and the
right to be driven by output compare unit 2 (for the
trigger). Then it sets the colours for the front-panel
LEDs (green on the left, red on the right), initializes
W3 and W4 for a loop over arp_notes that the calling
code will do, and compares the velocity byte against
zero for the note off test in the calling code.

The calling code at arp_updown_note, immedi-
ately after the rcall arp_note_top, uses a bra eq
instruction to detect the note off case, which will be
handled by arp_updown_noteoff. The note on case
starts with a call to arp_search_push (which is in
the in-order arpeggiator section of the source file) to
search arp_notes and detect whether the note we just
saw is already recorded there. This helper returns
NZ status (the CPU’s Z flag is cleared) if the note
is found; otherwise, it returns Z status, turns on the
left LED, and pushes the new note onto arp_notes.
The calling code in arp_updown_note just returns,
effectively ignoring the note on message, if it sees NZ
status indicating the note was already in arp_notes.

On a real new note, not previously recorded,
arp_updown_note maintains the sorted order of the
array by doing one pass of bubble sorting; that is
linear time to make the array sorted given that it
already was sorted except for the newly-added ele-
ment at the end. (Optimal time for a comparison-
based sorted insert is O(logn) but then we couldn’t

use a straightforward array, the lower-order overhead
of a more complicated algorithm would make any real
speed advantage iffy on this problem size, and mem-
ory is in shorter supply than time here anyway.) The
loop examines each pair of two consecutive entries,
starting at the top of the array and moving toward
the bottom with overlap, swapping each pair found to
be out of order and terminating when it finds a pair
in order. The newly-added element will be swapped
to an earlier index by every comparison until it is
in its proper sorted place. Handling of note on ends
after this loop.

The note off code starts by searching arp_notes
for the note number that just ended; it just ignores
the MIDI message if that note was not found for some
reason. It pops the stack and uses the note just re-
moved to overwrite the place where the input note
was found. That has the effect of removing the note
off message’s note from the array, while correctly han-
dling the case of removing the last note (because it
will be just overwriting its own former location, now
no longer within the valid range of array indices). It
turns off the left LED if this operation left the array
empty. Then it does another linear-time single pass of
bubble sorting to bring the array back into sorted or-
der, should this operation have disrupted that prop-
erty.

Background processing for the up/down arpeggia-
tor is straightforward, but the source code is com-
plicated a little by star section subroutines used to
share code with the other arpeggiator channels. The
breakdown into subroutines is along the boundaries
of which literal instruction sequences could be shared,
rather than on the basis of their higher-level purposes.

First there is a call to arp_bk_top1, which han-
dles most of the things needed at the start of ev-
ery arpeggiator background handler. This call is
inside a TRY/TRIED block with the handler set
to GOTO_W4_INSTRUCTION so that the sub-
routine can, if necessary, abort the outer, calling
context in a concise way. Inside the star section,
it starts with a call to tempo_from_comparators
which updates the tempo clock for any recent events
(1 PPQN or 24 PPQN clock edges) on the input
jacks. Then it checks whether there are any notes
currently in arp_notes and if there are none, it
THROWs to arp_reset, which resets the arp_index
variable (position in the sequence) to zero, clears the
beat flag (SI_BEAT in SOFT_INT_FLAGS), low-
ers the gate, turns off the right LED, and terminates
arp_updown_bk (or the other _bk handler when

91

called from some other channel).
Next, arp_bk_top1 finds the value of

TEMPO_CLOCK modulo 24; it fetches that
variable and then subtracts 24 as many times as
necessary (at most two may be necessary) to bring it
into the range 0–23. This number indicates where we
currently are during the quarter-note beat. When it
is equal to 21, 22, or 23, it means we are currently in
the 1/8 beat silence between gate pulses. Then the
code THROWS to arp_beat_end, which lowers the
gate voltage, turns off the right LED, and terminates
the per-channel _bk handler.

The next check is of the SI_BEAT flag in
SOFT_INT_FLAGS, which is set by the tempo tim-
ing subsystem at the start of each beat. If this flag
is not set, then we are in the middle of a note, as-
sumed to have already been handled when it started,
and no more background processing is necessary;
arp_bk_top1 THROWs to RETURN_INSN, termi-
nating the caller.

The remaining case, and the only one in which
arp_bk_top1 will return normally instead of via
THROW, is when SI_BEAT was found to be set,
with at least one MIDI note being played. Then, it
will be necessary for the arpeggiator to choose and
play a note. The code clears SI_BEAT, raises the
gate (no toggle and delayed raise needed because the
timing already guarantees a silence between notes),
turns on the right-side LED, and pokes output com-
pare unit 2 to start a trigger pulse on the trigger
output. Then it returns.

Next, arp_updown_bk calls arp_bk_top2, star
section code shared with Channel 6 whose main func-
tion is to choose the left-side note for the arpeggia-
tion. The high byte of the arp_index variable is
an index into arp_notes for the left side. The code
here calls a nested star section subroutine named re-
duce_and_find_note to keep the index within range
given that the array length may have changed since
the last update. Then it increments the index and
calls send_bent_to_dac1 to set the left-side pitch
CV, with pitch bend.

After the return from arp_bk_top2,
arp_updown_bk does a little bit of processing
unique to Channel 5. It decrements the right-side
note index (low byte of arp_index), with another
call to reduce_and_find_note to keep it in range,
and ends with a tail call to send_bent_to_dac2.

A detail to note in the up/down arpeggiator code
is that it increments the index for the left side after
using it, but decrements the index for the right side

before using it. Both indices are repeatedly reset to
zero (start of the zero-based array) as long as there
are no MIDI notes played. As a consequence, when
the user starts playing a chord (two or more notes)
immediately before a beat, the first note in the se-
quence the arpeggiator plays will be the lowest one
on the left, going up, and the highest one on the right,
going down.

Channel 6: arpeggiate in order
The arp_inord_note subroutine handles note on and
off messages for both Channels 6 and 7. It main-
tains the arp_notes array in the order the notes were
entered, which is sufficient to support both in-order
and random arpeggiation, with different background
processing code.

The arp_inord_note code is basically just
arp_updown_note without the sorting. It starts
with a call to arp_note_top, the shared code that
turns on comparator interrupts, sets the LED colours,
and checks for a note off message. Then it either
branches to arp_inord_noteoff or continues on into
arp_search_push, which pushes the new note at the
end of the array (and was called as a subroutine in
the more complicated arp_updown_note code).

In arp_inord_noteoff, the code searches the ar-
ray of currently-playing notes for one that matches
the note in the note off message, aborting if it is not
found. Then it shifts any subsequent notes down to
delete that note while preserving the relative order of
the others. It turns the left LED off if this procedure
leaves the stack empty, and that completes the note
off processing.

The arp_inord_bk subroutine handles back-
ground processing for the in-order arpeggiator. It
is specific to this channel, but shares much code with
arp_updown_bk. It starts by calling arp_bk_top1
inside a TRY/TRIED block to update the tempo
clock from the input jacks, stop processing if there
are no notes played, and handle the right LED, gate,
and trigger. Then it calls arp_bk_top2 to update
the left-side analog output, which steps sequentially
through the contents of arp_notes; that is the same
logic as in Channel 5 but with different result because
of the different ordering of the array.

After that it only remains to handle the right-side
analog output, which also steps through arp_notes
but one step ahead of the left. That is accomplished
by taking the left-side index, which was incremented
as a side effect of the left-side processing, and passing
it again into readuce_and_find_note again to get the

92

next note. Then arp_inord_bk ends with a tail call
to send_bent_to_dac2 to set the right-side analog
output voltage.

Channel 7: arpeggiate randomly
Channel 7 uses the same handler for note on and off as
Channel 6. That code maintains the arp_notes array
in the order the notes were entered. The unique pro-
cessing required for random arpeggiation is all imple-
mented in the background handler, arp_random_bk.
It starts by calling arp_bk_top1, the shared code for
all the arpeggiator background handlers that takes
care of timing, the gate and trigger outputs, and the
beat LED. That code returns normally (instead of
THROWing and terminating arp_random_bk) only
at the start of a beat when it is necessary to choose
a new note, with at least one MIDI note currently
playing.

The new note is chosen according to the following
rules, depending on how many notes are currently
playing.

• The note on the right is a uniform random
choice from all the currently-plaing MIDI notes.
It could be any of these, including a repetition
of its previous value.

• The note on the left is always one of the
currently-playing MIDI notes. The only one,
if there is only one.

• If there are at least two currently-playing MIDI
notes, then the left note avoids the choice made
on the right.

• If there are at least three currently-playing
MIDI notes, then the left note also avoids its
own previous value.

• The left note is a uniform random choice from
whatever options remain.

The random choices use the PRNG API from
utils.s. The code is fairly straightforward. It calls
PRNG_READ_INT to get selections for the right
and left, then uses a few conditionals to check
whether the left hit a note it was trying to avoid, with
enough choices available for avoiding it to be possible.
In such cases, it loops back to get a new left-side se-
lection and repeats until a suitable choice is found.
Then it sends both selections (which are indices
into arp_notes) through reduce_and_find_note and
then to the DACs.

Channels 8 and 9: mono CV/gate on one
side
Channels 8 and 9 are a cooperating pair, sharing the

same code for note messages and background process-
ing. Each sends pitch and gate CV to the outputs on
one side of the module.

The note on and off handler in one_side_note
closely resembles the monophonic note code from
Channel 1. It disables comparator interrupts, con-
figures the hardware for GPIO output on both sides,
and sets the LED colours to green. Notes on either of
Channels 8 and 9 will set the hardware configuration
for both sides because these channels are intended
to work together and leaving one side of the module
in the configuration of some unrelated channel would
not be useful. Also, the background processing for
either of these channels updates both of them, nec-
essarily so because background processing is selected
on the basis of the one most recently used channel.

If the incoming message was note off, there is
a branch to one_side_noteoff. Otherwise the data
bytes are stored (in a set of variables that depends on
the low bit of the channel number, so 8 and 9 are kept
separate); the gate on the appropriate side is toggled
and the LED turned on; and the BF_EAT_1MS and
BF_RAISE_GATE1 or _GATE2 flags are set, to
handle the gate in the usual way, either going high
on a new note or briefly going low and then high.
The note number is processed by calc_bent_note and
sent to the DAC.

The background processing in one_side_bk just
re-calculates the pitch-bent note and sends it to the
DAC. The small difference from similar background
processing in other channels is that here, the opera-
tion repeats on both the left and the right.

The one_side_noteoff code also resembles that
in other channels, save for the conditional to make
it work on the appropriate side. It checks whether
the note in the note off message matches the one cur-
rently playing, which might not be the case if a new
note “stole” an old note; the end of the old note can
then be ignored. If the note ending really is the cur-
rent one, then it updates the data bytes, branches
according to which side is being handled, and then
lowers the gate voltage on that side, turns off the
background flag that might raise it later, and turns
off the LED.

Channel 10: drum triggers
Notes in Channel 10 send trigger pulses on the output
jacks, depending on the note number. As discussed
in the UBM, each note number maps to one of the
four jacks according to a scheme that guarantees two
properties. Any four consecutive MIDI note num-

93

bers starting with one that divides evenly by 4 (such
as {0, 1, 2, 3} or {60, 61, 62, 63}) will map to distinct
jacks; and any four MIDI note numbers spaced two
apart, such as {0, 2, 4, 6} or {65, 67, 69, 71}, will map
to distinct jacks. The point is to make it easy for a
user to find four notes that will work, on their chosen
MIDI controller, without actually needing to support
reconfiguration of the note mapping.

The beginning of the note-handling code in
drum_trig_note is moved into the star section sub-
routine drum_note_start so that it can be reused by
Channel 11. This code remaps the digital outputs to
OC1 and OC2 to allow for pulse output (depending
on the value of W5; Channel 11 will pass in a different
value to configure them as GPIO); turns off compara-
tor interrupts; and does the note number to output
jack mapping with a few bit-twiddling instructions.
It checks whether this was a note on or off message
(result going to the CPU’s zero flag), and updates a
bit in drum_notes that records the on or off status
of each of the four equivalence classes of notes.

After the return of drum_note_start, the calling
code does a conditional branch to drum_leds on the
zero flag. For note off messages, updating the LEDs
is the last thing to do. For note on messages, it finds
the output compare module relevant to the new note,
and triggers it to generate a 960µs pulse. The pulse
length of 960µs was chosen so that two such pulses
1 ms apart, which is normally the closest interval at
which separate notes can be sent because of the USB
1 ms clock, will still be distinguishable.

Output compare units 1 and 2 drive the output
jacks, through PPS mapping and the output buffer
amplifiers but without requiring further CPU inter-
vention. Units 3 and 4 are not mapped to microcon-
troller pins and the CPU needs to be involved further
in sending pulses to the DACs with the timing set by
the output compares. So in case of note numbers as-
sociated with the analog output jacks, after trigger-
ing the associated output compare, the CPU makes
a call to WRITE_DAC1 or WRITE_DAC2 as ap-
propriate, with the value 0x0FFF corresponding to
about +5.5V.

After triggering the output compare and possi-
bly writing to the DAC, the code continues into
drum_leds, which ends note message processing by
setting the colour and on/off status of each front-
panel LED. The left LED is red if note class 2 is
active, green if class 0 and not 2, off otherwise. The
right LED is red if note class 3 is active, green if
class 1 and not 3, off otherwise.

The drum channels have no background pro-
cessing done by _bk handlers; their entries in the
per_channel_background jump table are just re-
turn instructions. Lowering the analog output volt-
age at the end of a pulse is done by the ISRs for
output compare units 3 and 4 when appropriate.

Channel 11: drum gates
Channel 11 is similar in function to Channel 10, with
MIDI note numbers mapping to the four output jacks.
The difference is that Channel 11 sends gate pulses,
high as long as the note in question is playing, rather
than trigger pulses.

The note on and off code in drum_gate_note
starts with a call to drum_note_start, which sets the
digital outputs to GPIO mode, disables comparator
interrupts, does the note number mapping, updates
the note state in drum_notes, and tests whether the
incoming message was a note off message. The rest of
drum_gate_note is responsible for raising or lowering
the gate voltage on the appropriate output jack, and
then ends with a branch to drum_leds, from Chan-
nel 10, to set the front-panel LEDs.

The code uses a somewhat complicated jump ta-
ble intended to save program memory space. A few
instructions prepare for the jump by putting 0x0FFF
into W0 for note on and zeroing W0 for note off.
Note on messages also offset the jump index by four
entries, so the table ends up containing six entries:

• note class 0 off (left digital output goes low);
• note class 1 off (right digital output goes low);
• note class 2 on or off (write W0 to DAC1);
• note class 3 on or off (write W0 to DAC2);
• note class 0 on (left digital output goes high);

and
• note class 1 on (right digital output goes high).
Like Channel 10, Channel 11 has no background

processing done by a _bk handler.

Channel 12: mono with clock out
Channel 12 handles monophonic notes with pitch and
gate CV on the module’s analog outputs and 1 PPQN
and 24 PPQN clock pulses, controlled by the tempo
clock, on the digital outputs. It can receive timing
in 1 PPQN or 24 PPQN format on the input jacks,
or use timing from MIDI messages or the typing key-
board tap tempo feature. Both LEDs light when a
note is active, basically in green, but the right one
also blinks red on the beat, overriding the green.

The code for this channel includes the helper sub-
routine use_comparator_int, which is also used by

94

other channels that accept timing on the input jacks.
It enables PIC24 interrupts for the comparator hard-
ware, also clearing any old comparator interrupt re-
quest status if the channel number has changed.

The note handler for Channel 12 starts by call-
ing use_comparator_int. Then it remaps the digital
output jacks to output compare units 1 and 2, for
sending trigger pulses. Then it sets the left LED to
be green and checks for whether this was a note off
message, branching to cv_clock_noteoff in that case.

The gate logic is similar to that of other chan-
nels: toggle at note on and then raise 1–2 ms later,
so that a stolen note will result in a brief gate drop
to retrigger envelopes and similar. But because this
channel uses the DAC for the gate output, it can-
not use a plain SFR bit toggle to change the gate
state. Instead it checks the old data bytes to de-
termine whether the gate was previously high, and
sends 0x0000 or 0x0FFF to the DAC accordingly.
Then it sets BF_EAT_1MS and BF_RAISE_CV2
in background_flags to ensure that the gate voltage
will be high soon even if it was just lowered; turns on
both LEDs; calls right_led_beat_colour to handle
the double duty of the right LED; and ends with a
tail call to send_bent_to_dac1 to apply pitch bend
and set the pitch output voltage.

The note off code in cv_clock_noteoff is much
like other channels’ note off code. It checks to make
sure the note ending now is the same one currently
playing, otherwise ignoring the note off. It stores the
new data bytes. Then it lowers the gate by sending a
zero to DAC2, clears BF_RAISE_CV2, turns off the
left LED, and fall through into right_led_beat_state
to set the state of the right LED.

The code at right_led_beat_colour sets the
colour of the right LED to red if the low bit of
BEAT_FLASH is set, green if not. This code does
not actually turn the LED on or off. The ear-
lier label right_led_beat_state does that (on when
the low bit of BEAT_FLASH is set, off otherwise)
before falling through into right_led_beat_colour.
So note on, which turns on both LEDs before call-
ing right_led_beat_colour, will leave the right LED
turned on and either green or red, whereas note off,
which uses right_led_beat_state, will leave the LED
either turned off, or turned on and red.

The background processing code in cv_clock_bk
is mostly concerned with sending the clock
pulses. It calls right_led_beat_colour or
right_led_beat_state depending on whether there is
a note currently playing, and send_bent_to_dac1 to

update the pitch CV for possible pitch bend. Then
it calls tempo_from_comparators, the shared code
to update the tempo clock from the digital inputs.

The Timer 4/5 ISR will set SI_BEAT in
SOFT_INT_FLAGS at the start of each beat. The
code here checks for that. If found, it clears the flag,
and triggers OC2 to send a 960µs pulse on the right
digital output jack. Before terminating it sets the
BF_EAT_1MS flag, which will delay the next call
to this background processing handler by an extra
millisecond.

When SI_BEAT was not detected, the back-
ground code compares TEMPO_CLOCK (which is
a soft timer advancing at 24 counts per beat) against
the variable pulsed_tick, which records the value of
TEMPO_CLOCK last time this code checked it. If
they do not match, then a new tick has occurred and
it triggers OC2 to send a 960µs pulse on the left dig-
ital output.

The beat detection logic is arranged to make
sure that the 1 PPQN pulse will happen unam-
biguously before the 24 PPQN pulse at the start
of the beat. At the start of the beat, both
SI_BEAT and TEMPO_CLOCK are updated, more
or less simultaneously. The first call to cv_clock_bk
detects the SI_BEAT flag, sends the 1 PPQN
pulse, and having detected SI_BEAT it does not
check TEMPO_CLOCK nor update pulsed_tick. It
sets BF_EAT_1MS to make sure the next call to
cv_clock_bk will not happen immediately. When
that next call does happen, probably about 2 ms
later, it will check TEMPO_CLOCK, detect the new
tick there, and send the 24 PPQN pulse.

As with other pulses sent by the Gracious Host
firmware, the reason for making these pulses 960µs
was a desire to make them approximately 1 ms but
still have two successive pulses distinguishable if they
are sent exactly 1 ms apart.

PPS mapping
Different MIDI channels require different hardware
configurations for the digital output jacks, both with
respect to PPS mappings and the output compare pe-
ripherals that may be behind those mappings. The
MIDI backend includes a unified API for reconfigur-
ing these jacks, and note on/off handlers generally
begin with a call to the pps_remap subroutine to set
up the configuration used by the channel in question.
Although the name refers to PPS, this API also han-
dles output compare configuration.

The pps_status variable records the current sta-

95

tus of PPS mapping and output compare configura-
tion; right side (RP8 and OC2) in the low byte and
left side (RP14 and OC1) in the high byte. The val-
ues for each byte may be 1 for GPIO, 2 for output
compare configured to send 960µs pulses, or 3 for
output compare configured to send a square wave.
A byte value of zero indicates the current state of
the side is unknown or not yet set up, which will ne-
cessitate configuring it unconditionally. Otherwise,
pps_remap will detect when the requested configu-
ration matches the existing one and skip making any
changes.

The pps_remap call takes the desired new value
for the pps_status variable in W5. It trashes W0,
W3, W4, and W5, but preserves W1 and W2 (which
are often needed by the note handlers). It checks
whether the old and new values for the entire variable
match and aborts if they do; otherwise, reconfiguring
something will be necessary, so it unlocks the PPS
mapping registers. The remainder of the code is a
fairly straightforward sequence of conditionals that
compare the bytes of the old and new values, and
do the requested configuration changes wherever they
differ. Then it saves the new value for pps_status and
locks the PPS registers up again.

Tempo timing
Throughout MIDI operation, the backend keeps track
of the quarter-note beat. This timing signal may
be driven by MIDI messages (the Timing Clock and
Start messages, status bytes 0xF8 and 0xFA respec-
tively); from the input jacks when using channels
that support such input; or from the typing keyboard
driver’s tap tempo key. The tempo clock is used by
the arpeggiators to time new notes, and provided as
1 PPQN and 24 PPQN output signals when running
in Channel 12.

The API for the tempo clock involves
entry points MIDI_TIMING_CLOCK,
MIDI_TIMING_START, and
MIDI_TEMPO_TAP, as well as global vari-
ables TEMPO_CLOCK and BEAT_FLASH and
the SI_BEAT flag in SOFT_INT_FLAGS.

TEMPO_CLOCK records the current position
within the beat, and some implicit information about
tap tempo. This variable starts at zero after the
first tap of a tap-tempo measurement, and increments
at a rate of 24 PPQN. At the start of the second
beat it will have value 24, but instead of resetting at
24 it continues counting, through 48 (start of third
beat) and up to 71, after which it resets not to 0

but to 48. In normal operation when not measuring
tempo taps, it cycles from 48 to 71. Each count of
TEMPO_CLOCK corresponds to a reset of the 32-
bit Timer 4/5, which has its period adjusted to suit
the desired tempo. The SI_BEAT flag gets set at the
start of each beat (when TEMPO_CLOCK assumes
the value 0, 24, or 48) so that per-channel code can
recognize new beats if desired.

BEAT_FLASH records new beats in a different
format relevant to anything that flashes an LED on
the beat: it gets the value 0x5001 at the start of
each beat, and then the high byte counts down at
one count per millisecond until it reaches zero, while
the low byte remains 0x01 until the high byte is zero
and then becomes zero also. So this variable pro-
vides a convenient way of determining whether we
are in the first 80 ms of a beat, independent of how
fast or slow the beat is. Channel 12 flashes one
of the Gracious Host’s front-panel LEDs according
to BEAT_FLASH, and the typing keyboard driver
flashes the Scroll Lock LED on the keyboard.

The code starts with the helper subroutine
set_beat_flag, called in multiple places that reset to
the start of a beat. It sets SI_BEAT and initializes
BEAT_FLASH. Next are the three main API calls.

MIDI_TIMING_CLOCK is intended to corre-
spond directly to the MIDI Timing Clock message. A
rising edge on a 24 PPQN clock input, in modes that
provide them, also triggers this call. It advances the
clock by 1/24 of a beat, as well as possibly adding 24
or 48 to force TEMPO_CLOCK into the range 48–
71, which has the effect of clearing any in-progress tap
tempo command. It stops Timer 4/5 (by setting it to
maximum period, which causes the background pro-
cessing to prevent the timer from ever resetting). The
concept here is that when the user uses a 24 PPQN
clock, from MIDI or a clock signal on the input jack,
that will replace any other source for the rate of the
clock.

When using 24 PPQN timing it is still necessary
to know when a beat starts, that is, which of the 24
pulses in a beat corresponds to the start of the beat,
and the MIDI_TIMING_START subroutine serves
that purpose. The MIDI Start message causes a call
to this subroutine, even though Start is officially de-
fined as telling a sequencer to start a song rather than
a beat. The start of a song is assumed to also start
a beat. So this call forces TEMPO_CLOCK to the
value 47, turning off tap tempo and Timer 4/5 and
implying that the next MIDI_TIMING_CLOCK call
will be the start of a beat (pushing TEMPO_CLOCK

96

to 48). It is not expected that the module will receive
a Start message at the start of every beat; only that
whenever it does receive one, the next Timing Clock
message will be the start of a beat. After that it will
stay synchronized with a new beat starting on every
24th Timing Clock message.

The MIDI_TEMPO_TAP call is also expected
to happen at the start of a beat, but it is more
complicated. Once a tempo is established with
MIDI_TEMPO_TAP, the module will do its own
timing, automatically scheduling additional beats ac-
cording to its best guess of the time between re-
cent calls. So whereas MIDI_TIMING_START
only marks the start of a beat, and still de-
pends on MIDI_TIMING_CLOCK to advance
the clock, MIDI_TEMPO_TAP does not require
any other timing source. In order to be use-
ful all by itself, calls to MIDI_TEMPO_TAP
must occur in bursts of at least two consec-
utive beats; but if both MIDI_TEMPO_TAP
and MIDI_TIMING_CLOCK are used, the much
more frequent MIDI_TIMING_CLOCK calls will
constantly turn off tap tempo detection, leaving
MIDI_TEMPO_TAP to serve as just a start-of-beat
synchronization signal. The tap tempo key (keypad
insert) in the typing keyboard driver invokes this call.
Rising edges on the 1 PPQN input also invoke this
call in channel modes that have such an input, allow-
ing for three operating modes of synchronizing to the
input jacks.

• With input on the 1 PPQN jack only: the mod-
ule follows that jack’s timing, attempting to
track the tempo as it may change.

• With input on the 24 PPQN jack only: the
module follows the timing of the 24 PPQN
clock, with nothing to synchronize the start of
a beat (unless some other source, like MIDI or
the typing keyboard, provides start of beat syn-
chronization).

• With input on both jacks: the 1 PPQN in-
put serves as reset (start of bear) while the
24 PPQN input controls the tempo.

The code for MIDI_TEMPO_TAP starts by cap-
turing the current value of TEMPO_CLOCK and
Timer 4/5, which measures time within the current
1/24 beat period at an accuracy of 500µs (1:8 divi-
sion from the processor instruction clock). The timer
gets reset to a value of one count after having been
stopped for eight instructions while we read the value,
so it is being read and reset at the same instant, to
within the hardware’s available accuracy. The code

calls set_beat_flag because a tempo tap always cor-
responds to the start of a beat.

Then it looks at the captured TEMPO_CLK
value. Tempo taps in general reset this variable to
zero. If the captured value is 32 or above, it means
that, according to the tempo measured in two or more
previous taps, we have now received a tap more than
one and a half beats after the last one. That means
the taps are coming in too irregularly to get a good
measurement; so it stops Timer 4/5 and returns. This
new off-beat tap will become the first tap of the next
attempted measurement.

Otherwise, we have two taps from which we will
attempt to infer the tempo. The code takes the pe-
riod of Timer 4/5 multiplied by TEMPO_CLOCK,
to represent the time measured in previous resets of
Timer 4/5 since the start of the beat, and adds the
captured value of Timer 4/5 from the current tick.
The sum is a 32-bit number representing the number
of 500µs counts since the last tempo tap. This is di-
vided by 24 to get the target value for Timer 4/5’s
period.

If the time between the last two tempo taps has
changed significantly from the earlier tempo estimate,
then we want to use that target period value directly.
The user has selected a completely new tempo. On
the other hand, if a new tempo tap has come in about
when we were expecting one anyway (because the
user has entered three or more taps at a reasonably
consistent tempo) then we want to average it with the
existing tempo, to allow for finer control than would
be possible with just two taps. Note that the typing
keyboard driver in particular has a timing granular-
ity of typically 10 ms (set by the limitations of USB
interrupt endpoints), so using just two taps might
not give an accurate result. At 120 BPM, ±10 ms in
the beat timing is about ±2.5 BPM, enough to be a
perceptible difference; but the average over three or
more taps will be more accurate.

If the captured value of TEMPO_CLOCK is in
the ranges 0–21 or 26–31, then the timing measured
between this tap and the last is used directly; the new
tap was not close enough to the old beat for averaging
to be reliable. If the captured value is in 22–25, then
the code takes the old period Q and the new period
P and computes the value (3Q + P)/4 to use as the
new period for Timer 4/5.

That ends foreground processing for the tempo
clock. Some remaining logic for tempo timing is in
the Timer 4/5 ISR, discussed below.

97

Interrupt service routines
The 32-bit combined Timer 4/5 generates its inter-
rupts on the Timer 5 vector, and the handler for
that vector is in this file. Resets of Timer 4/5 corre-
spond to 24 PPQN clock ticks. The handler acknowl-
edges the interrupt, increments TEMPO_CLOCK,
and handles the special overflow behaviour of this
soft timer: when it increments past 71, it resets to
48 instead of zero. When it reaches 48 (from 47
or 71) or 24 (by incrementing from 23), that rep-
resents the start of a beat and the ISR makes a call
to set_beat_flag.

The MIDI backend uses interrupts from the four
output compares OC1–4 when they are configured
to generate pulses. Pulse generation from the out-
put compares is a little finicky and poorly explained
in Microchip’s documentation, and there is a rele-
vant hardware erratum for them. According to the
erratum (and it is consistent with my observations),
there is a requirement to wait for “two prescaler cy-
cles,” which is 16 instruction times (1µs) with the 1:8
prescaler mode used here, after the interrupt before
clearing the output compare’s mode bits. Further-
more (and this is the unclear point in the documen-
tation) it actually is necessary to clear the mode bits
at all. We cannot just leave the output compare unit
in pulse mode all the time and request new pulses
repeatedly. A new pulse is not triggered by just a
write operation to the mode bits, as might be a rea-
sonable interpretation of what it says in the manual.
Instead, to get a new pulse it is necessary to clear
the mode bits to zero, and then change them back to
represent pulse mode. The pulse is triggered by the
actual change of the bit values.

The code at this point defines a subroutine named
oc_safety_delay, which takes 16 instruction cycles to
rcall and return. The handlers for the OC1 and OC2
interrupts acknowledge the interrupts and clear the
mode bits, calling oc_safety_delay before and after.
These two output compares, when used at all, send
their outputs to the front-panel jacks in hardware and
need no CPU support for that; the reason to have an
ISR is just to make sure the mode bits are reset on the
proper schedule without requiring foreground code to
handle that.

Output compare units 3 and 4 are not connected
to front-panel jacks in hardware, but their timing
controls the pulses that the CPU will send through
the DACs. The OC3 and OC4 ISRs are similar to
those for OC1 and OC2, but the code also sends a
zero to the corresponding DAC for the front-panel

analog output to lower the voltage at the end of the
output pulse. Foreground code would have sent the
value 0x0FFF to the DAC to raise the voltage at
the same time it started the pulse. These ISRs call
oc_safety_delay before resetting the mode bits, but
they do not bother with a delay afterward because
the call to WRITE_DAC1 or WRITE_DAC2 will
already take more than a microsecond.

98

Test routines (tests.s)
It is often useful when debugging firmware to run
specialized test code on the microcontroller, either at
full speed in the environment of the real firmware,
on the real chip but single-stepping with a debugging
tool, or on Microchip’s simulator without using a real
chip. The tests.s file collects subroutines written for
testing and development.

Each of these is conditionally assembled, under
the control of symbols set in the config.inc file. A nor-
mal “production” build of the firmware will not actu-
ally contain any of them. But during development it
may be useful to build in any or all of them by edit-
ing config.inc. If SKIP_TESTS is not defined, then
the firmware will jump to the test code upon boot-up
instead of running its main loop. Most of the tests
also define maintenance codes (see qwerty.s), allow-
ing them to be triggered at run time with a typing
keyboard. Note that if the relevant tests are not as-
sembled into the firmware, then the maintenance code
definitions also will not be assembled and so will not
be available. But if running under a debugger, it may
be most useful to simply use the debugger to override
normal control flow and jump to a test routine when
desired instead of using a maintenance code anyway.

Calibration routine, code 5833
The TEST_CALIBRATION symbol simply assem-
bles a branch to CALIBRATION_PROCEDURE in
calibration.s, treating the always-included calibration
routine as a test in the same framework as the others.

CRC32 test, code 2540
Define TEST_CRC32 to activate the CRC32 test,
which uses the PIC24 CRC hardware to compute
the CRC32 value of the ten-byte ASCII string
“1234567890”; that is a standard test vector. The 32-
bit result ought to be 0xCBF43926. After doing the
calculation, the test routine either colours the LEDs
green (on success) and loops to try again, or colours
them red (on failure) and stops in an infinite loop,
repeatedly idling the CPU. So if the LEDs stay green
while the CPU is running, that means it has not only
gotten the right answer once, but is repeating the test

probably thousands of times per second and getting
the right answer every time (at least, until the WDT
possibly times out). But rather than letting it run at
full speed, it is probably more useful to run this test
while single-stepping, possibly even in the simulator
rather than actual hardware, to watch what happens
in the peripheral’s registers.

Actually using the PIC24’s hardware CRC pe-
ripheral is a bit complicated and non-intuitive. Mi-
crochip’s documentation is confusing and the consen-
sus when I looked in their user support forum was
that it is too hard to be worthwhile, and better to
just write a software implementation. Although the
process is not very visible in the final test code, I
found this test code useful for getting the hardware to
actually work – by doing extensive trial and error of
modifications on this test routine until it succeeded,
then using that knowledge to inform the firmware’s
real CRC code in loader.s.

LED blinker test, code 3183
Define TEST_LED_BLINKER for a simple test of
the LED blinker driver (ledblink.s). It uses that
code’s API to set the two LEDs to a pattern of vary-
ing long and short red and green blinks, then goes
into an idle loop.

MIDI stream test, code 1001
The MIDI stream test, activated by
TEST_MIDI_STREAM, sends bytes of data
to the MIDI back end driver as if they had been
received from a USB MIDI device (in single byte
mode). That can be useful for testing the back end
without needing to also have an input device that
works.

The data stream to send is defined be-
tween the local symbols midi_stream_data and
midi_stream_end, and it will be sent infinitely re-
peating with 150 ms delay between bytes (as con-
trolled by USB_LOOP_WAIT, for which this rou-
tine is also a useful test).

The data stream in the distributed code, which
could be modified by editing the code, is 0x90 0x3C

99

0x66 0x80 0x3C 0x00, which corresponds to Note On,
Note Off, for Middle C with velocity 102 in Channel 1.

PRNG test, code 5879
The PRNG test activated by defining TEST_PRNG
extracts random numbers from the pseudo-random
number generator and sends them to the DACs, pro-
ducing white noise on the analog outputs. It uses the
calibrated-voltage code path and can also be a test of
that. There is a commented-out pwrsav #1 instruc-
tion in the loop. With that commented out, the loop
runs at maximum speed (allowing a test of how fast
the PRNG actually is), but is liable to be interrupted
by the watchdog timer. With the pwrsav #1 put in,
the CPU idles waiting for an interrupt once each time
around the loop, which is useful for estimating how
often interrupts tend to occur.

Scoping, or listening to, the noise outputs dur-
ing this test may be of some help in verifying that
the PRNG really produces something like the desired
distribution.

SPI test, code 9485
SPI transactions can be tested by defining
TEST_SPI. This test sends four transactions,
in a loop: first a read from the low moby (addresses
0x00000 to 0x0FFFF) of the SRAM; then a write to
DAC1; then a read from the high moby (0x10000
to 0x1FFFF) of the SRAM; then finally a write to
DAC2. The addresses, and the values sent to the
DACs, increment each time around. The test point
(P5) also goes high during the write to DAC1, low
at other times during the loop.

The idea is that this loop creates a pattern of sig-
nals on the pins of the microcontroller that can use-
fully be probed with an oscilloscope. There is enough
unpatterned traffic on the SPI data lines to create
“eye patterns” useful for seeing that voltages and rise
and fall times on the SPI bus are as they should be.
By using the test point signal as a trigger, it is possi-
ble to zoom in on particular transactions in the loop
and see that the DAC is getting the right data and the
SRAM is responding appropriately to signals. And
the DAC outputs can also be probed to see whether
they are giving reasonable-looking upward ramps.

USB eye pattern test
The PIC24 USB hardware is supposed to support an
eye pattern test mode activated by setting bit 15 in
the U1CNFG1 register. I have not been able to find
detailed documentation on what this feature actually

does. There is a caution in the Microchip documen-
tation saying not to activate it with a real USB device
connected. It’s reasonable to guess that it may drive
the USB data lines into oscillation to display eye pat-
terns on an oscilloscope.

I wrote the USB_EYE_PATTERN_TEST rou-
tine to activate the eye pattern test mode on ex-
perimental hardware, but it didn’t seem to do
anything. The code remains for possible future
experiments, conditionally assembled on defining
TEST_USB_EYE_PATTERN, but it may not be
very useful, so no maintenance code has been defined.
This code does also toggle the digital output jacks,
and the LEDs between red and green (fast enough to
appear yellow).

By putting an oscilloscope on either USB data
line while sending data from a USB device that sends
data frequently (possibly a mouse for low speed or a
MIDI keyboard for full speed), with careful triggering
and a persistent display it is possible to display eye
patterns without needing any special testing mode on
the host. I am not even sure that USB eye patterns
as such are particularly useful for this hardware; I
did not have any bugs for which they helped in de-
bugging. But they are fun to look at, and scoping
the USB data lines was useful for several issues (in
particular, related to attach/detach and SOF/keep-
alive generation) that were not debugged using eye
patterns as such.

100

USB boot mouse driver (mouse.s)
The USB boot mouse driver is a relatively simple per-
device driver and serves as an example of the frame-
work code also used by the others.

TPL entry
The source file starts with a few instructions as-
sembled into a section named til_mouse, which the
linker will automatically insert in the Targeted Inter-
face List. These make a call to the support routine
TPL_MATCH_CLASS_AND_PROTOCOL with
the register values for class 3 (“HID”), subclass 1
(“boot protocol”), protocol 2 (“mouse”). The session
manager calls the TIL for each interface descriptor
the device exposes, and if it exposes one saying that
the attached device is a boot mouse, then this en-
try will direct execution to the entry point at label
mouse_driver.

Data structures
After declaring some constants for mouse sensitivity,
the range of notes supported by the DACs, and the
pattern of semitones in the diatonic scale, this sec-
tion declares a bunch of local variables in the com-
mon data area using the in_common macro. There
is also a small section of constant data assembled into
program memory, which serves as a template for ini-
tializing the local variables.

Driver init and mouse input
The entry point at mouse_driver starts by
calling USB_CONFIGURE_DEVICE and
USB_SET_BOOT_PROTOCOL from usb.s to
tell the device to use the current configuration
descriptor and the boot mouse protocol. These
calls have the side effect of cleaning up the lnk
stack frame left behind by the session manager.
The boot mouse protocol uses a single interrupt
input endpoint, which is initialized by the support
routines.

Next the code initializes the local common-data
variables using the template. This includes setting up
the IRP for the interrupt transactions used to read
the mouse position. A few words of zeroes at the

start of the layout are initialized with a repeat/clr
loop instead because that is cheaper than having ex-
tra zeroes at the start of the template.

Next, the driver looks at the poll-frequency rec-
ommendation from the device, which was stashed at
offset 12 in the EP data structure by the support rou-
tines. It clamps this to be in the range 5 ms to 200 ms,
then saves it in W11. The code in the main loop is
sufficiently simple that most of the higher-numbered
working registers can be used as local variables, re-
taining their values throughout the loop.

Finally before starting the main loop, it calls
PPS_MAP_GPIO_DOUT from firmware.s to make
sure that the digital output jacks are in GPIO mode,
and clears the first two bytes of the I/O buffer to
make sure that the driver starts with the buttons
recorded as unclicked. At least some mice send zero-
length reports when there is no change from the pre-
vious state, so without this step the buttons might
remain in an uninitialized state until after the first
click.

The main loop begins at label driver_loop. This
starts with a call to USB_LOOP_WAIT, which
keeps the polls happening at the interval in millisec-
onds that was stored in W11. Next, it clears the
bytes at offsets 1 and 2 in the buffer (the X and Y
offsets), so that if the mouse returns a short report,
the firmware will see zeroes and not keep adding up
the offsets left behind by earlier full-length reports.

Then it calls USB_WAIT_ON_IRP with the
proper arguments to request an up to 3-byte report
from the mouse’s interrupt in endpoint.

Mouse report decoding
The three bytes of the mouse report are as follows.

• Offset 0: button states, 1 for pressed and 0
for released; left, right, and middle buttons
mapped to bits 0, 1, and 2 respectively.

• Offset 1: X offset from the previous position,
signed 8-bit number.

• Offset 2: Y offset from the previous position,
signed 8-bit number.

Mice often return short or zero-length results, in

101

which case the remaining bytes will not be changed by
USB_WAIT_ON_IRP. The previous button state
left in byte 0, and the zeroes we explicitly wrote to
bytes 1 and 2, will then show through instead.

The code for this section starts by sign-extending
the X byte to 16 bits and calling a star section
subroutine (shared with the Y-axis code below) to
scale it with MOUSE_SCALE_MULTIPLIER and
MOUSE_SCALE_DIVISOR, two constants that can
be tweaked to get different sensitivity. The result
is added to the abs_x variable, and then clamped
by another star section subroutine to the range
LOW_NOTE to HIGH_NOTE. Then the same logic
operates on the Y coordinate.

The buttons local variable stores the previous two
values of the button byte from the mouse, old in high
byte and new in low byte. This gets updated: the
low byte is swapped into the high byte and the byte
we just read from the mouse is written into the low
byte. Next the code checks whether, between the last
report and the current one, the middle button has
gone from unclicked to clicked. If so, it increments
the quantization mode (initially 3, only the lowest
two bits actually used).

The variables abs_x and abs_y are stored in
the usual semitone-and-fraction format used by many
parts of the Gracious Host firmware. The high byte
is the MIDI note number and the low byte repre-
sents additional pitch above that, scaled at 256 units
equal to one semitone. The code somputes semitone-
quantized versions of abs_x and abs_y and stores
them in W6 and W7 respectively. The algorithm for
semitone quantization is very simple: add 0x0080 to
the register value (half a semitone) and then truncate
by zeroing the low byte.

Then there is some logic to choose cases according
to the current quantization mode, looking at the bot-
tom two bits of the mode variable. For modes 0 and 1
the left LED is red (as a matter of colour; turning it
on and off is handled later), and for modes 2 and 3 it
is green. The low bit of the mode variable similarly
controls the right LED.

Mode 0 (smart quantize)
Mode 0 is the “smart” quantization mode, and the
most complicated one: it quantizes to a diatonic scale
but tries to adjust that scale on the fly to match the
user’s note choices.

The way it works is that a diatonic (major or mi-
nor) scale covers seven consecutive positions in the
circle of fifths, for instance, F–C–G–D–A–E–B for

C major or A minor. The most naturally “nearby”
scales are the ones that overlap almost entirely with
the current one; for instance, F major removes B at
the right and adds BZat the left, whereas G major
removes F at the left and adds F\at the right. Each
differs from C major by only one note changed.

So if the user seems to be playing notes more at
the left end of the sequence, it suggests they really
want to be playing in a flatter key than this one and
we should shift the window of allowed notes to the
left, whereas if they seem to be mostly playing notes
toward the right, it suggests they want to be in a
sharper key and we should shift the window of allowed
notes to the right. The way the driver detects these
conditions is by counting how many times the user
has played the note at either end of the scale (the
subdominant and dominant, if we call this a major
scale), as a streak without playing the one at the
other end.

The two extreme notes are the fourth and the sev-
enth of the major scale: F and B in the case of C ma-
jor. Note that the two notes B and F are harmoni-
cally as far apart as you can get in the same diatonic
scale, and they form a tritone and are usually thought
to sound dissonant when played together. Musicians
tend to avoid using these two notes – or more gen-
erally, the two notes at harmonic extremes of any
diatonic scale – in close proximity to each other, ex-
cept in certain cases like the dominant seventh chord
where there is tension being created on purpose.

Play the fourth three times without playing the
seventh, and smart quantization shifts the scale to
the subdominant. Play the seventh three times with-
out playing the fourth, and smart quantization shifts
the scale to the dominant. So starting from C major,
if you play F three times without playing B, then B
is removed from the scale and replaced by BZ, shift-
ing the key to F major. You have musically implied
that you don’t really want to use B and would prefer
to have more notes harmonically close to F. On the
other hand, if you play B three times without play-
ing F, then F is removed from the scale and replaced
by F\, shifting the key to G major; you have implied
that you would prefer to have more notes close to B.
If you play both B and F in close proximity without
heavy emphasis on just one of them, then you are
implying that you really do want to play in C major
after all, or A minor, which is the same set of notes,
those being the only diatonic keys that can accom-
modate both B and F; and doing this prevents the
smart quantizer from changing the key. The result is

102

that the key will shift to accommodate the notes the
user is playing, as comfortably as possible, and other
notes offered as quantization choices will always be
notes that harmonize well with the notes the user is
choosing.

I don’t know how musically useful this mode really
is, but it seems to produce reasonable results in prac-
tical tests, and that description may shed some light
on what it is attempting to achieve. The basic idea is
just that you can plug in a mouse, mess around with
it, and have something come out that sounds musical,
despite the difficulty of making accurate note choices
with the mouse as controller. Obviously, users who
want a more precisely controllable quantization mode
can use some other one; but they are also likely not
to want to use a mouse as a performance controller
anyway.

The implementation starts by calling quan-
tize_to_key, a chunk of code shared with mode 1
below. It finds key-quantized versions of the X and
Y coordinates, that is, the closest notes in the dia-
tonic key instead of just the closest semitones, using
the variable named “key” to choose which key. The
variable named key is kept as a modulo-12 number in
the high byte, zero low byte, for compatibility with
semitone-and-fraction pitch values. But the key value
is added to the pitch before quantization, so it has to
be the negative, modulo 0x0C00, of the desired root
note. For example, the key of C\ major is repre-
sented by 0x0B00. Adding that to a semitone-and-
fraction number for any C\ will give a round multiple
of 0x0C00.

The quantized-to-key absolute notes for the X and
Y coordinates go in W6 and W7, but the relative
notes within the key are saved in W9 and W10. Those
are integers in the range 0 to 11, counting semitones
from the root of the major scale without the octave.
For instance, the note E will give a value of 4 in
the key of C major/A minor. Due to the quanti-
zation to the diatonic scale, the only possible values
for W9 and W10 after quantize_to_key are those in
{0, 2, 4, 5, 7, 9, 11}.

Then the code checks the left button for whether
it is newly pressed. If so, we have a new note to count
on the X coordinate. If W9 is 5 (fourth of the major
scale, like F in C major) then we add one to the
fourths counter and zero out the sevenths counter.
If W9 is 11 (seventh of the major scale, like B in
C major) then we add one to the sevenths counter
and zero the fourths counter. So, either way, we have
a count of the length of the longest streak of fourths or

sevenths without the other. The same logic is applied
to the right button. Note they share the same set of
fourths and sevenths counters.

Next the fourths and sevenths counters are
checked for whether there has been a streak of three
fourths or three sevenths. If not, the handling for
mode 0 is over and the code branches to do_output.
If there has been such a streak, the key is shifted
accordingly, by adding either 0x0700 for a shift to
the subdominant after three fourths, or 0x0500 for
a shift to the dominant after three sevenths. Either
way, the key is reduced modulo 0x0C00 to keep it in
the range 0x0000 to 0x0B00. Then there is a branch
to clr_fourths_and_sevenths, which is code shared
with mode 1 that clears the fourths and sevenths
counters before branching to do_output.

Mode 1 (quantize to C major)
Mode 1 is essentially just mode 0 with the key forced
to stay in C major and the fourths and sevenths
counts held at zero. It starts by zeroing the key
variable, then calls quantize_to_key, the star section
shared with mode 0, included and described here to
reduce the complexity of the mode 0 code and de-
scription.

At the start of quantize_to_key, W8 is ini-
tialized with the constant bit mask from DIA-
TONIC_SCALE, which is 0x0AD5. That value an-
swers the question, for each bit number i from 0 to
11, of whether a note i semitones above the root of a
major scale is or is not in the scale.

If a note was quantized to a scale note then it can
remain there, but if it was quantized to a non-scale
note then it must go up or down an additional semi-
tone, which guarantees it will land on a scale note
because every non-scale note is surrounded by scale
notes one semitone above and below. In order to
make sure that it ends up as close as possible to the
original unquantized pitch, we want this new semi-
tone shift to be in the opposite direction from the
rounding that was done to get the pitch to an exact
semitone in the first place.

So the code takes the quantized X-coordinate
note from W6, adds the key variable (always zero in
mode 1, but possibly nonzero when this same code is
called from mode 0), and then calls mod_c00, a util-
ity routine used in several places that computes the
remainder of the unsigned 16-bit number in W0 when
divided by 0x0C00. The significance of 0x0C00 (3072
decimal) is that it is one octave (twelve semitones) on
the scale used throughout the Gracious Host firmware

103

where one semitone is 0x0100. So by reducing W0
modulo 0x0C00, we get a number representing where
W0 is within its octave, with the octave itself re-
moved.

The high byte of the result says how many semi-
tones W6 was above the root of the current key. That
is used to choose a bit in W8 to find whether W6 was
quantized to a scale note. If so, W6 can be used di-
rectly as the scale-quantized note. If not, then W6
is compared against abs_x, which was the original
unquantized pitch value, to determine which way the
rounding went to quantize the note. It gets adjusted
one more semitone in the opposite direction, and un-
der the circumstances that guarantees it will end up
on a scale note. The “round in opposite direction”
operation is done in another star section subroutine
named round_flip.

Having done all that to quantize W6 onto a scale
note, the code goes through the same logic with W7
for the Y coordinate, and quantize_to_key (the code
shared with mode 0) returns.

In mode 1, the last step after quantize_to_key is
to zero out the fourths and sevenths counters, so that
if the user ends up switching back to mode 0, they
will be starting with a clean slate.

Modes 2 and 3 (semitone and unquan-
tized)
By the time the code for modes 2 and 3 is reached,
most of the work of choosing notes is already done,
so this code is just a few conditionals to distinguish
between the two remaining modes and set the front-
panel LED colours. The code starting at do_output
expects to find the current notes in W6 and W7. For
semitone quantization, those registers already con-
tain the right values and after setting the LED colours
we can just branch to do_output. For unquantized
notes in mode 3, it first copies abs_x and abs_y back
into W6 and W7 and then falls through.

Result output
Conditionals starting at do_output handle turning
the LEDs on or off (their colours were already chosen
earlier, by the per-mode logic) and raising or lower-
ing the gate outputs. Button 1 controls the left gate
output directly. The left LED goes on if buttons 1
or 3 are pressed. Also, when the left button is not
pressed, the variable abs_x gets copied into W6 –
pitch output is unquantized when the button is not
pressed. Then the same logic repeats mutatis mutan-
dis for button 2 and the right LED and gate.

At the bottom of the main loop, W6 and W7 con-
tain the semitone-and-fraction pitch values for the X
and Y coordinates, with the appropriate quantization
if any. The code calls NOTENUM_TO_DAC1 and
NOTENUM_TO_DAC2 from calibration.s to send
these values to the analog output jacks, and then
loops back to driver_loop.

104

USB boot keyboard driver (qwerty.s)
The USB boot keyboard driver allows a common
QWERTY (typing) keyboard to function like a MIDI
(musical) keyboard for controlling the Gracious Host.
It also supports some extra features like tap tempo
for the arpeggiator channels, and maintenance codes
used in testing the module.

This driver is called the “boot keyboard” driver
from the terminology used by the USB standards.
They define a complicated protocol for human inter-
face devices including keyboards, and then a simpli-
fied subset of the keyboard behaviour that is easier to
implement and almost universally used in preference
to the complicated protocol despite the standard’s
presenting it as only meant for use during a personal
computer’s boot process.

TPL entry and key tables
The first items in the source file are a TPL entry,
which recognizes USB devices that expose an inter-
face of class 3 (“HID”), subclass 1 (“boot”), proto-
col 1 (“keyboard”); and two tables of information as-
sociated with key codes.

USB defines its own list of key codes, generally
starting with the most common keys that every key-
board has, in the lower code numbers, and then pro-
ceeding toward more obscure keys in higher numbers.
Exactly what a key code refers to (the legend written
on the key; the location of the key on the keyboard;
or the character the key will send when typing) is not
clear and seems to be inconsistent. Keyboards with
unusual layouts may map the keys to the codes in
surprising ways. Unfortunately, there is nothing the
Gracious Host can do about variations in keyboard
layout; there is no standard way for keyboards to
report more detail about their layout than just send-
ing the key codes. The Gracious Host just assigns a
function to each key code, with the diagrams in the
UBM showing where those key codes are most likely
to appear on a typical consensus keyboard layout.

Key codes 0x00 to 0x03 are reserved and error
codes. Codes 0x04 to 0x1D are the letters of the
Latin alphabet. Then codes 0x1E to 0x27 are nu-
merals – the main, typing numerals typically found

on the row above the letters. All these codes are
recognized in the key-handling code by checking the
range boundaries.

Key codes that require individual handling sub-
routines range from 0x28 to 0x64. Starting from
press_tbl_start in program memory is a table of pro-
gram memory addresses for the codes from 0x28 to
0x64. For each code, the address stored in the ta-
ble is that of a handler to be called when the key
is pressed. The instruction immediately before the
press handler is the start of the release handler, so
by looking up the press handler and subtracting two
address units, the framework code finds the address
of the release handler. At the release-handler address
might be a return (if there is no processing needed
for the key release); a nop (causing execution to fall
through into the press handler, if the same code can
handle both); or a branch instruction pointing at a
longer handler elsewhere.

A second table of two-byte entries indexed by key
code starts one instruction before the note_tbl_start
label and records, for each key that is meant to play
a MIDI note, the MIDI notes that key will play in
piano-style (Num Lock off) and isomorphic (Num
Lock on) layout modes. This table covers key codes
0x04 through 0x38 for letters, numerals, and a few
punctuation marks, but also key code 0x64 at what
is effectively index −1, the instruction word immedi-
ately before the note_tbl_start label. The low byte
of each entry is the MIDI note number for pressing
the key in piano-style mode and the high byte is for
isomorphic mode. A few key codes that fall into the
0x04–0x38 range but are not note keys, such as 0x29
for Esc, have dummy 0xFFFF entries. Laying the ta-
ble out this way, with some special-case code to check
for the exceptional index before the starting address
of the table, ended up saving program memory com-
pared to other ways the same information might be
recorded.

Some assembler directives after the key tables
check the length of each table by subtracting its start
and end addresses, and raise an error if a table length
is not as expected. That is intended to guard against

105

editing errors which can easily leave the wrong num-
ber of entries in a table.

Maintenance codes
The typing keyboard driver has a general-purpose
feature for activating hidden and special firmware fea-
tures which might be useful in testing and debugging.
With a typing keyboard plugged in, the user can hold
the Ctrl and Alt keys and type in a four-digit dec-
imal code on the numeric keypad. Then the key-
board driver jumps to an address associated with the
code by a table lookup. Other parts of the firmware
can add entries to the table for code-accessible entry
points they may define.

Two examples of what the table entries look like
are in qwerty.s under the heading “Maintanance code
table.” The entry format is one word for the four-
digit code (in BCD, first digit should not be zero)
followed by one word for the address to jump to. In
this file, the code 8605 is defined to jump to RE-
SET_INSN (simulating a reboot of the module) and
8189 is defined to jump to THROW (simulating ab-
normal driver termination).

Other source files should define their maintenance
codes in sections named mtbl or starting with mtbl_.
The linker will gather such sections in memory be-
tween the _mtbl_init and _mtbl_done sections de-
fined here; the order of entries within the table is
unimportant. New code values should be selected
uniformly at random from the set of four-digit num-
bers not starting with zero. I chose mine by rolling
dice.

The code that recognizes maintenance codes is de-
scribed below in the sections on the Ctrl, Alt, and
keypad numeral keys.

RAM data
Most of the driver’s variables defined in the com-
mon data area will be described with the code
that uses them, but it is worth noting that
FIND_IN_OUT_ENDPOINTS, defined in this file,
expects to find int_in_ep_ptr and int_out_ep_ptr
at the very start of the common area, immediately fol-
lowed by the array of endpoints it will search. Other
drivers that share this code (in particular, the USB
Mass Storage and USB MIDI drivers) must also use
this layout for compatibility.

Driver initialization and main loop
The code in FIND_IN_OUT_ENDPOINTS is sep-
arated into a subroutine and given a global label

so that it can be shared by other drivers. Its gen-
eral function is to scan the array of endpoints found
by a previous call to USB_CONFIGURE_DEVICE
and find the first input and first output endpoint, if
any. It writes pointers to these endpoint structures to
int_in_ep_ptr and int_out_ep_ptr, and also leaves
them in W6 and W7. The pointers are null (0x0000)
if no endpoint in the corresponding direction was
found at all. This code will also terminate with a
THROW if USB_CONFIGURE_DEVICE found no
endpoints at all.

The driver entry point at qwerty_driver starts
by calling USB_CONFIGURE_DEVICE and
USB_SET_BOOT_PROTOCOL to select the
configuration and boot protocol. Then it calls
FIND_IN_OUT_ENDPOINTS to find the inter-
rupt in endpoint, and the interrupt out endpoint
if there is one. The in endpoint is necessary, and
the code will terminate with a branch to COM-
PLAIN_ABOUT_DEVICE if none was found. The
out endpoint will be used if present but is not
required, so that is not checked at this point.

Next, it clears the common data variables. Most
of them are cleared to zero, but the key_notes ar-
ray (recording the channel and note number currently
played by each pressed note key) is cleared to 0xFFFF
because 0x0000 could in principle be a valid data
value there.

After that the driver code sets up the IRP to point
at its data buffer; sets the polling delay to match
what was requested by the device, but limited to the
range 2 ms to 100 ms (it is expected that most de-
vices will request 10 ms); initializes a couple more
variables that need non-zero init values; and starts
up the MIDI backend.

The main loop starts at driver_loop with
a call to MIDI_BACKGROUND so that the
MIDI back end can do its ongoing tasks. It
loops on that and a pwrsav instruction until
USB_LOOP_CHECK returns nonzero, indicating
time for another poll of the interrupt endpoint.
Then it sets up the IRP for a transfer of eight
bytes from the interrupt in endpoint, and does
the transfer with a call to USB_WAIT_ON_IRP.
The use of UF_MIDI_BKGND in USB_FLAGS
means that USB_WAIT_ON_IRP will also be call-
ing MIDI_BACKGROUND inside its own loop.

Some USB keyboards will return an empty packet
if there is no change from the last update. There is a
check at this point for whether the packet is less than
eight bytes (which in practice means it’ll be zero); in

106

such cases, it branches to handle_lr_shift, skipping
most of the key processing.

Most modifier keys
The first byte of data returned by the keyboard repre-
sents the status of “modifier” keys; these are the ones
like Shift and Alt that are typically held down while
pressing other keys to change the other keys’ effects.
The eight bits of the byte represent pressed or un-
pressed status of Shift, Ctrl, Alt, and what the USB
document calls “GUI,” which is a modifier key that
usually has a computer or operating system vendor’s
logo on it (Apple, Microsoft, etc.).

Code at this point in the driver loop handles Ctrl
and Alt. As of this writing, GUI is ignored, and the
Shift keys are handled later because they have an
effect (pitch bend) on every pass through the loop
as long as they are pressed, regardless of whether we
actually received a report of a status change from the
keyboard on this particular pass.

The previous_modifiers variable stores the value
of the modifiers byte from the last update. That gets
compared against the new value to detect whether
either Ctrl key is newly pressed. If so, a new press of
left Ctrl subtracts 12 from the variable named octave
(which represents the current octave shift, measured
in semitones) and a new press of right Ctrl adds 12.
The variable is limited to four octaves down or five
octaves up, representing the furthest shifts at which
the keyboard layout will still be able to hit at least a
few valid MIDI note numbers.

Alt is currently only used in combination with
Ctrl, for entering maintenance codes. So there is a
check for whether both Ctrl and Alt are pressed (ei-
ther or both Ctrl keys, and either or both Alt keys).
If not, the maintenance_code variable gets cleared.
Digits get shifted into this variable when the key-
pad numerals are pressed, but since every valid code
starts with a nonzero digit, the variable will never be
able to contain a valid code and cause something to
happen unless Ctrl and Alt are held throughout the
code entry process.

Regular typing keys
Keys other than modifier keys are reported in the
third through eighth bytes of the keyboard’s response
packet. (The second byte is “reserved for OEM use”
by the standard.) The currently-pressed keys are
listed in these bytes, one byte per key, with the re-
maining bytes filled by zeroes. It is because of this
data structure that the USB boot keyboard protocol

is limited to a maximum of six simultaneously-pressed
keys.

This code makes use of an array called key_flags,
containing a word for each of the 256 byte values, ini-
tialized to zero. The previous value of the six pressed-
key bytes is kept in previous_keys, and the logic
around the array runs as follows. The flag checks are
intended not only to detect new presses and releases
between the earlier update and the current one, but
also handle reasonably the case of a key code listed
more than once in the same update.

• For each key in previous_keys, set bit 1 of the
corresponding word in key_flags.

• For each key in the buffer (new update), set bit
0. If it and bit 1 were both previously zero,
then we have a new press of this key; handle it
(as described below).

• For each key in previous_keys, clear bit 1. If
it was set, and bit 0 is not set, then we have a
new release of this key; handle it (as described
below).

• For each key in the buffer, clear bit 0. As a side
effect of this loop, write the new value of the
byte to previous_keys.

The four loops above share a star section fragment
called find_key_flags which indexes into the (current
or saved) buffer, and finds the appropriate word of
the key_flags array. In that same star section is a
label called second_return_insn, which is a return
instruction immediately after another return, used
for no-op entries in the press handler table.

The second and third loops, which detect
newly pressed and newly released keys, share the
find_press_tbl_entry subroutine, which looks up the
key code in the press handler table with handling for
out-of-range values. It returns NZ status if the key
code has a press handler, and the address of the press
handler in W4 in that case. For key codes less than
0x28 it returns note_press; others get looked up in
the table.

Recall that the instruction word immediately be-
fore the press handler is supposed to be the start
of the release handler. The second loop (handling
presses) calls the address that find_press_tbl_entry
returned in W4 on NZ status; but the third loop (han-
dling releases) decrements it first. Subroutines called
this way do whatever is needed to handle the press
or release of the key in question.

Left and right shift
After handling presses and releases of ordinary (non-

107

modifier) keys, the main driver loop enters the code
at handle_lr_shift, to process the pitch bend effect
of the Shift keys. If it received an empty update from
the keyboard, processing skips to this point, because
pitch bend should keep happening on every update,
even the empty ones. The idea is that pitch bend
keeps going up at a fixed rate as long as right Shift is
held, down as long as left Shift is held, then returns
toward zero at another fixed rate when neither is held.

This code looks at the previous_modifiers vari-
able, which at this point contains the current mod-
ifiers byte if the keyboard sent one, but otherwise
stores the last modifiers byte that the keyboard did
send. It builds up the rate of pitch bend to apply in
W0. It sums negative QWERTY_PBEND_RATE
(set in config.inc) if the left Shift is pressed and pos-
itive if the right Shift is pressed. If both, those
will cancel to zero. Then if W0 is zero and the
current pitch bend value is nonzero, it sets W0 to
±QWERTY_PBEND_RETURN (another configu-
ration value from config.inc), with sign opposite to
the current pitch bend.

The pitch bend rate is measured in pitch bend
units per millisecond, so it gets multiplied by the in-
terrupt endpoint’s update interval (measured in mil-
liseconds) to get the adjustment to apply to the pitch
bend. Next, the absolute values are checked: if the
adjustment would cause the pitch bend to strictly
cross zero (go from negative to positive, or positive
to negative), then it is reduced to only take the pitch
bend to zero.

Finally, the new pitch bend value (old value
plus adjustment) gets calculated, with clamping to
its 14-bit signed integer range; formatted into a
MIDI message for the current channel; and passed
to MIDI_READ_MESSAGE.

Keyboard LED update
The last step in the main driver loop is to update the
keyboard LEDs. The variable named leds holds the
desired new status of the LEDs, while previous_leds
holds its value at the last update. Bit 0 of leds corre-
sponds to the Num Lock LED, representing isomor-
phic mode, and is maintained by the press/release
code for the Num Lock key. Bit 1 corresponds to the
Caps Lock LED and is set by code at this point in the
main loop if the sustain variable is nonzero. Bit 2 cor-
responds to the Scroll Lock LED, which lights under
circumstances summarized as octave shift XOR beat
flash. It gets set if the BEAT_FLASH variable low
byte is nonzero, which is true for 80 ms at the start

of each beat when the tempo clock is running, and
then it gets toggled if the octave variable is nonzero.

The new value for leds is compared against previ-
ous_leds, and if they differ, then the keyboard must
be told to update its LEDs.

If the keyboard exposes an output end-
point (recognized by int_out_ep_ptr nonzero, as
set by FIND_IN_OUT_ENDPOINTS) then it
is preferable to set the LEDs by writing to
that endpoint, and the driver loop code does
that, setting up the IRP accordingly and calling
USB_WAIT_ON_IRP. Without an output end-
point, it calls USB_SET_REPORT instead, to send
the LED update command using the CTRL endpoint.
Either way, this is the end of the main loop and it
branches back to driver_loop.

Press and release: note keys
The rest of the source file consists of per-key handlers,
called by the main loop when non-modifier keys are
pressed or released according to the entries in the
press table. The release handler is expected to start
on the instruction immediately before the start of the
press handler. These handlers should preserve W11–
W15, but may trash W0–W10. On entry, the main
loop leaves the key code in W3 (low byte, with the
high byte zeroed); twice the key code in W0; and a
pointer to the flags word in W1.

The first pair of handlers is for keys that play
MIDI notes. Those include the main alphabet letters,
the numerals in the row above them, and most of the
punctuation keys clustered around the sides of the
typical keyboard layout.

When a note key is pressed, the main loop calls
note_press, which starts by looking up the key in the
note table, with special-case handling for key code
0x64. The lookup yields a word representing the
key’s MIDI note numbers in piano-style and isomor-
phic layout modes. Depending on the current mode,
the code chooses which byte to use and formats it
into a word in W10 with the note number in the low
byte and the MIDI channel in the high byte.

Next, it applies the octave shift by adding the
octave variable (measured in semitones) to the note
number, clamping the result to the range 1–127 for
valid note numbers. It records the current channel
and note number for this key in the key_notes ar-
ray, which keeps track of the note currently being
played by each key, if any. The note played by a
key is not necessarily the same every time because of
octave shift and isomorphic/piano mapping switches,

108

and the channel can vary as well. In general, once
a key starts a note it will continue playing the same
note on the same channel until released even if the
shift, mapping, and channel change while the key re-
mains pressed.

Some special handling is required for the sustain
feature (Caps Lock, discussed in the next section). At
this point the issue is that if the key just pressed plays
a note and channel that is already being sustained
by the sustain feature, then it should not generate a
new MIDI note on message. So there is a check first
against the channel on which sustain is active (stored
in the variable named sustain); then whether the note
that this key is playing is already recorded in the sus-
tained_notes array. If the note is already being sus-
tained, then the code to send the note on is skipped.
But otherwise, the code sets up the arguments in W1
and W2 and calls MIDI_READ_MESSAGE for a
note on.

If the sustain state is 1, which corresponds to
Caps Lock actually pressed at the moment and not
only locked on, and the current channel matches the
sustain channel, then new notes should become sus-
tained. In that case the current note is recorded in
the sustained_notes array. And that ends the key
pressed handler.

The key released handler is next in the source file
at the note_release label, which is referenced by the
branch immediately before note_press so that the key
released code will be able to find it. This handler
starts by setting the key’s entry in the key_notes
array to the null value 0xFFFF, recording the fact
that this key is no longer playing a note. The old
value is captured for use in the following checks.

The check for sustain is similar to the check in
the press handler: if sustain is active, the note just
released was in the sustained channel, and it was ac-
tually one of the sustained notes recorded in the sus-
tained_notes array, then this note should continue
after the end of the keypress. It will instead get a
note off message when sustain ends. And in that case,
the note off message is skipped, with a branch to RE-
TURN_INSN that ends the release handler. But in
other cases, there should be a note off message at the
end of the keypress. The code sets up W1 and W2
for a note off (actually zero-velocity note on) and tail
calls MIDI_READ_MESSAGE.

Press and release: sustain (Caps Lock)
The ability to press multiple keys at once and have
them all register correctly is usually called rollover

in the case of typing keyboards and polyphony in the
case of music keyboards. The USB boot keyboard
protocol can support at most six-key rollover for non-
modifier keys because there are only six bytes for key
codes in the report format; and because of limitations
on the wiring and scanning of the switch matrix, most
USB keyboards are unable to really support even
six simultaneous keys in at least some combinations.
Quite often there exist combinations of just two or
three keys that cause the keyboard to either fail to
report one of the pressed keys, or report a “ghost” key
that was not actually pressed. Furthermore, human
anatomy limits how many keys the user can accu-
rately press at once even if the keyboard could reg-
ister them all, and some musical applications (like
the quantizer modes) may create a demand for hold-
ing notes longer than it is convenient to hold down a
keyboard key.

To help resolve these issues the typing keyboard
driver has a sustain feature activated by the Caps
Lock key, which allows locking an arbitrarily large
set of notes to remain held as long as desired, without
needing to physically press many keys simultaneously.
The basic concept is that note keys which overlap
with a first press of Caps Lock become sustained, and
remain playing until a second press of Caps Lock.
More detail on the use of the sustain key from the
performer’s point of view is covered in the UBM.

In more detail from a code perspective, the vari-
able named sustain takes on the values 0, 1, and 2 to
track the current state in the following sequence of
events.

• Startup state, sustain state 0: note keys gen-
erate note on messages when pressed, note off
messages when released. Caps Lock LED off.

• At the moment of the first Caps Lock press:
LED goes on, sustain state becomes 1. Current
channel is memorized as the sustain channel, all
currently-playing notes in that channel become
sustained notes.

• During the first Caps Lock press: any newly-
played notes in the sustain channel generate
note on messages and become sustained notes
too. Keys released that were playing sustained
notes in the sustain channel, do not generate
note off messages. Keys pressed that would play
notes already sustained in the sustain channel,
do not generate additional note on messages.

• At the first release of the Caps Lock key: LED
remains on, sustain state becomes 2.

• Before the next press of Caps Lock, while sus-

109

tain state remains 2: note keys generate note on
and off messages normally, except those corre-
sponding to sustained notes in the sustain chan-
nel have no effect.

• At the second press of Caps Lock: sustain state
returns to 0. Caps Lock LED goes off. Note off
messages are generated for all sustained notes,
except those for which there is currently a note
key actually pressed. All sustained notes are
cleared.

• The second release of Caps Lock has no addi-
tional effect.

Some support for this behaviour was in the note
key press and release handlers described above. The
rest is in the sustain_press and sustain_release han-
dlers, called on press and release of Caps Lock. The
LED setting is done in the driver main loop, with a
check of the current state value.

The sustain_press handler starts by checking
whether the state is 0 or 2, which determines whether
this is the first or second Caps Lock press of the se-
quence. On the first press, it increments the state to
1, stores the current channel in sustain_channel, then
scans the key_notes array to find currently-playing
notes. All those that are in the current channel (some
might not be, if the channel changed while the key
was held) get recorded in sustained_notes, and then
the handler returns.

On the second press, code at the unlock_sustain
label starts by clearing the sustain state. Then it
scans key_notes to find any notes in the sustain chan-
nel that are currently being played by note keys;
such notes are removed from sustained_notes, be-
cause their note off messages will be delayed until
the keys are released. Then it scans sustained_notes
and sends note off messages to the MIDI backend for
all the notes it finds there, clearing the array as a side
effect, before returning.

The sustain_release handler is very simple: it just
checks whether the state was 1 (indicating that it’s
the first Caps Lock keypress ending now) and if so,
increments it to 2.

Press and release: channel keys (F1–12
etc.)
The function keys F1–F12, and four more keys (Print
Screen, Scroll Lock, Pause/Break, and Esc), corre-
spond to the 16 MIDI channels; pressing a function
key switches the current channel, used by future note
key presses, to the associated channel. The key codes
for these keys are conveniently arranged: 0x29 for Esc

and 0x3A to 0x48 for the others. So the press han-
dler for these keys, at channel_press, subtracts 0x3A
from the key code to get the channel number (in in-
ternal format, where F1 and Channel 1 correspond
to value 0), and then if the result is negative indicat-
ing the Esc key was pressed, it substitutes 0x0F for
Channel 16. The result goes into the variable named
channel.

There is no release handler for these keys; the
instruction before channel_press is a return, shared
with the end of sustain_release.

Press and release: isomorphic mode
(Num Lock)
Pressing Num Lock toggles the isomorphic keyboard
layout. The press handler is just a btg instruction
that toggles the Num Lock bit in the variable named
leds, followed by a return, and there is no release
handler. The note key handler looks at the Num
Lock bit in leds to determine which layout to use.

Press and release: velocity (keypad nu-
merals)
The keypad numerals 1–9 serve two purposes: they
set the velocity that will be sent with note on events,
and they enter digits of a maintenance code.

The code at velocity_press starts by subtract-
ing 0x58 from the key code to get the digit value.
That is multiplied by 14 and stored in the velocity
variable. Then (at handle_maintenance_code, la-
belled for reuse by the keypad-zero handler) it shifts
the digit value into the low four bits of the mainte-
nance_code variable, moving up whatever bits were
already there.

Bearing in mind that maintenance_code is con-
stantly reset to zero when Ctrl and Alt are not both
held, and all maintenance codes start with a nonzero
digit, if the variable ever contains a complete main-
tenance code then that means the user has gone
through the full procedure of holding Ctrl and Alt
while typing the four digits. So a loop at this point
scans the maintenance code table, checking the value
of maintenance_code against the codes in the table.
If one matches, it jumps to the address associated
with that code in the table. With no match, the han-
dler returns.

Press and release: tap tempo (keypad In-
sert)
The keypad zero/insert key’s main function is to enter
tap tempo commands for the MIDI backend’s timer.

110

It also serves as a zero when entering maintenance
codes. The release handler is just a return. The
press handler calls MIDI_TEMPO_TAP, then tail
calls handle_maintenance_code with W3 cleared to
enter a zero digit in the maintenance code.

111

USB-MIDI interface driver (usbmidi.s)
The code in usbmidi.s is the per-device driver for
USB-MIDI devices. These would typically include
MIDI interfaces (such as to connect DIN-MIDI de-
vices) and MIDI keyboards or other controllers. In
principle, MIDI synthesizers follow the same stan-
dard and the Gracious Host can connect to them too,
but because it only handles MIDI input and does not
generate MIDI events of its own, connecting a syn-
thesizer may not be a popular thing to do.

Although the MIDI and USB drivers are each
quite complicated, the USB-MIDI driver is simple,
because it just serves as glue between these other two.

Data structures
The source file starts with an entry which
the linker will insert into the executable TPL
data structure to recognize USB devices that
this driver can handle. This is a call to
TPL_MATCH_INTERFACE_CLASS that looks
for an interface descriptor of class 1 (“audio”), sub-
class 3 (“MIDI streaming”).

Then it defines some data structures in the
common area. The very start of the com-
mon area is laid out in the way assumed by
FIND_IN_OUT_ENDPOINTS in qwerty.s, so that
we can reuse that code. This layout necessitates
two words at the start for pointers to the first
in, and first out, endpoint found; then there fol-
lows an array of EPs which will be filled in by
USB_CONFIGURE_DEVICE.

USB-MIDI devices, according to the 1.0 standard,
may theoretically have complicated interfaces with
many endpoints serving different purposes; but in
practice, real devices usually have exactly one bulk in-
put and one bulk output endpoint. Later versions of
the standard stopped allowing some of the more com-
plicated stuff. To increase the chance of success when
presented with a complicated USB-MIDI 1.0 config-
uration, the code here reserves space for up to eight
endpoints and then will use the first bulk input end-
point detected among those as the source for MIDI
input. This works well on nearly all MIDI devices
that someone could reasonably use with the module.

After the endpoint array comes an IRP structure,
and a buffer sized to hold a maximum-length packet
(64 bytes plus 8 bytes of padding to handle possible
DMA overrun, 72 total).

Driver initialization and bulk transfer
The entry point for the driver, pointed to by
the TPL entry, is at usb_midi_driver. It
calls USB_CONFIGURE_DEVICE to set the
configuration and clean up the stack, then
FIND_IN_OUT_ENDPOINTS from qwerty.s to
find the first input and first output endpoints in the
array. It checks that at least one input endpoint was
actually found (triggering a device unsupported er-
ror if not) and calls MIDI_INIT to start the backend
MIDI driver.

Then the main loop starts, at pre-
pare_bulk_request. It sets up the bulk in endpoint
and IRP for a bulk in transfer with maximum
packet size, and infinite NAKs allowed. It also sets
TOKEN_ALLOWANCE to 2, to allow a baseline
polling rate of 2000 polls per second.

The wait_for_data label starts an in-
ner loop which basically replaces the wait-
ing loop of USB_WAIT_ON_IRP, calling
MIDI_BACKGROUND and USB_POKE until
there is data available, with error and disconnect
checking. This loop increments TOKEN_STORE
on each cycle, so the actual polling rate will be
faster than the 2 kHz TOKEN_ALLOWANCE,
primarily limited by the time it takes to call
MIDI_BACKGROUND.

Packet decoding and garbage checking
Given a packet returned by the bulk endpoint, the
first step is to check that the transfer length is at
least 4 bytes, because valid transfers from a USB-
MIDI device are always at least that long.

One of my USB-MIDI devices (an Akai MPK Mini
keyboard) has a habit of sending a 64-byte transfer of
what seems to be random garbage upon initial con-
nection. To deal with that, and with other devices
that may do something similar, there is a scan of

112

the USB packet for invalid USB-MIDI data. USB-
MIDI formats its data as 32-bit packets, one or more
of which may be stacked up in a single USB trans-
fer. Depending on the type of 32-bit packet, quite
often only two or three bytes are used and the re-
maining bytes are supposed to be padded with zeros.
Any packet with nonzero data in what should be the
padding bytes according to its apparent packet type,
is not valid USB-MIDI data.

So the validity check steps through each 32-bit
packet in the buffer, looking at the low four bits of
the first byte of the packet, which are a field named
CIN from which we can infer the number of pad
bytes. Those bits are used as indices into the con-
stants 0xB054, which identifies CIN values that have
at least one pad byte, and 0x8020, which identifies
CIN values that have two pad bytes. All the pad
bytes get checked, and if any are nonzero, then the
whole USB transfer is discarded by a branch back to
prepare_bulk_request.

After the validity check, there is another loop
over the 32-bit packets in the transfer, looking again
at the CIN values. USB-MIDI usually encodes one
MIDI message (of up to three bytes) into each 32-bit
packet. The first byte contains the CIN field, which
says what type of message it is and basically dupli-
cates the function of the high nybble of the MIDI
status byte. The other half of the first byte is a “ca-
ble number,” which the Gracious Host ignores. USB-
MIDI also has a mode where it sends one byte of
MIDI at a time instead of an entire message; that is
indicated by a special CIN value. So this loop checks
first whether the packet’s CIN value corresponds to a
complete MIDI message we handle at all (some, such
as System Exclusive and some reserved-for-future-use
CIN values, at ignored). If so, then the three bytes of
the message are shuffled into the appropriate registers
and a call to MIDI_READ_MESSAGE sends it to
the backend. Otherwise, CIN value is checked against
15, which indicates a single byte of MIDI data, and if
that matches, the single byte is sent to the backend
by a call to MIDI_READ_BYTE. USB-MIDI stipu-
lates that single-byte and single-message packets may
be mixed; apparently, some devices really do that;
and so the Gracious Host’s MIDI backend is designed
to support mixed calls to MIDI_READ_MESSAGE
and MIDI_READ_BYTE.

The file concludes by a branch back to pre-
pare_bulk_request to look for more data.

113

USB mass storage and filesystem (usbmass.s)
The mass storage driver’s only application in the cur-
rent firmware is to read a firmware image file from a
USB mass storage device (which would probably be
a flash drive) and store it in the SRAM chip for the
code in loader.s to use. Actually doing that requires
multiple layers of driver code: establishing low-level
communication with the mass storage device’s USB
bulk endpoints; sending SCSI commands sent over
that communication channel; handling the partition-
ing of the drive, if any; and decoding the FAT filesys-
tem that will be stored either in a partition or on
the drive as a whole. All these layers are included in
the file usbmass.s. Some future or modified firmware
might be able to reuse parts of this code for other
applications.

USB mass storage overview
The USB standards allow for mass storage devices
to have many different kinds of interface, but USB
flash drives almost universally use just one: the bulk-
only SCSI interface. This interface is basically just
a USB wrapper around SCSI commands. The SCSI
commands then expose a simple interface where the
drive is regarded as an array of blocks indexed from 0
up to whatever size, and the host can request a read
or a write of however many blocks starting at a given
block number. Block size is variable in principle but
basically always 512 bytes in practice (the Gracious
Host code is designed to support powers of two from
256 to 4096, though the FAT filesystem may require
512 minimum). Index length, determining the num-
ber of blocks allowed, may be up to 64 bits when
using the longest form of the SCSI READ command,
but the Gracious Host firmware uses the READ (10)
command with a maximum index length of 32 bits,
corresponding to 2T drive capacity when the blocks
are 512 bytes.

Sending a command to the mass storage device
on the bulk-only SCSI interface goes in three stages.
First, the host sends a Command Block Wrapper
(CBW) to the device’s bulk out endpoint. The CBW
is 31 [sic] bytes long, with little endian fields in it, and
it contains an unaligned 16-byte field for the SCSI

Command Descriptor Block (CDB), padded to 16
bytes in the common case where the CDB is smaller.
The CDB is as defined by the SCSI standard. It con-
tains big endian fields, which tend to be 16-bit aligned
from the CDB’s point of view but end up unaligned
in the CBW because of the CDB’s unaligned start
address.

After sending the CBW, the host transfers as
much data as the command requires, through the de-
vice’s bulk in or out endpoints as appropriate. That
might involve multiple USB transactions because of
the 512 byte per transaction limit of full-speed USB,
but the data amount could be as small as zero in the
case of a SCSI command that needs no data beyond
the CDB.

Finally, the host receives a Command Status
Wrapper (CSW) from the device’s bulk in endpoint.
The CSW is 13 bytes long and reports whether the
command was successful or not.

To use the bulk in and out endpoints both for the
wrapper structures and the data transfer like this,
creates some concern about the device and host pos-
sibly falling out of synchronization. To help address
that concern, the CBW and CSW each start with
magic numbers, and the CBW contains a 32-bit tag
field which the host can set arbitrarily and the device
is supposed to repeat back in the CSW. The Gra-
cious Host firmware uses the PRNG API from utils.s
to choose tag values. When the host reads a 13-byte
chunk of data that it thinks ought to be the CSW,
it can check that the magic number is correct for a
CSW at all, and that the tag matches the one it sent
in the CBW, and if both matches succeed then it can
guess that the synchronization is probably correct.

SCSI offers a wide range of commands from ba-
sic block read and write to esoteric copy-protection
commands for outdated movie-distribution systems.
There does not seem to be any standard for exactly
which ones a USB flash drive will or will not sup-
port. The USB standards only go as far as how to get
SCSI commands to and from the drive and then leave
the rest to the SCSI standard. SCSI itself provides
some capability for auto-detecting which commands

114

a device can support, but it is not clear that every
USB flash drive even supports the commands to do
that autodetection properly. The Gracious Host uses
only the TEST UNIT READY, REQUEST SENSE,
READ CAPACITY (10) and READ (10) commands,
which are a bare minimum set expected to be sup-
ported on all devices that it could possibly work with.
Really, only READ CAPACITY (10) and READ (10)
should be necessary, but an earlier version that used
only those would fail with some USB flash drives that
apparently expected (against specification) to receive
the other two first. The parenthesized (10) in the
command names refers to the length of the CDB for
these commands (ten bytes); SCSI often defines mul-
tiple forms of a given command with different CDB
lengths, usually to allow for larger fields to support
larger drives in the longer CDBs.

Partition and FAT structure
The Gracious Host firmware looks for an update im-
age:

• in a file named FIRMWARE.FRM,
• in the root directory of a FAT filesystem,
• either written directly to the flash drive starting

at block 0,
• or contained in a primary partition described

by an MS-DOS-style partition table in block 0.
The firmware makes a few simplifying assump-

tions to reduce the complexity of searching for the
file. It does not write to the filesystem; it does not
handle extended partitions; it does not handle sub-
directories; and it does not handle long filenames. It
should still work on a flash drive which has any or
all of those things, but the update image file must
meet the criteria above to be found. On the other
hand, the firmware is intended to handle all of FAT12,
FAT16, and FAT32, including some weird variants
with nonstandard layout to the extent that that does
not significantly increase the complexity of handling
the most-expected cases. FAT32 is expected to be
the most common and is the best tested.

Here’s a brief description of how the on-disk data
structures work, which may help with understanding
the more code-oriented description of the driver code.

First: hard drives formatted for MS-DOS, and
Windows later adopted the convention, usually start
with the first 512-byte block defined to contain
a partition table, which describes up to four non-
overlapping ranges of the subsequent blocks, with a
little bit of metadata attached to each range. These
are called primary partitions. DOS and Windows tra-

ditionally show each partition as a separate drive let-
ter, so one might have a single physical hard disk that
appears in the operating system as drives C:, D:, and
E:. Each partition is formatted separately with a
filesystem, and it is even possible to put different op-
erating systems’ formats on different partitions. Dual
boot configurations on PCs would often do that.

There can only be at most four primary parti-
tions, but it quickly became apparent that having
more than four partitions on a disk might be useful.
Some variants of DOS put a larger table in the first
block of the disk, but with regular MS-DOS there
is not really enough space to store descriptions for
more them four partitions in the 512-byte first block,
especially not when (as is the case on some PC hard-
ware) that block also needs to contain some boot
loader code. So to allow more partitions, they added
a concept to the format of having one of the four pri-
mary partitions be marked as the extended partition.
Then a further partition table (not in the same for-
mat) could describe lower-level partitions inside the
extended partition, an effectively unlimited number
of them.

USB flash drives are usually formatted with a par-
tition table in the first block, and that partition table
describing exactly one primary partition covering the
rest of the drive, with a FAT filesystem inside the
partition. Another reasonably common setup is to
have no partition table at all, and the FAT filesystem
just covering the entire drive with its first block in
the drive’s first block. The Gracious Host is designed
to handle at least those two cases. It can also handle
some others – such as more than one primary par-
tition and the relevant FAT filesystem inside one of
them – but it cannot handle every unusual case that
a PC’s operating system might handle.

The term FAT filesystem refers to the data struc-
ture that stores a tree of files with names and direc-
tory paths inside what on DOS or Windows would be
one drive letter. This data structure is more or less
directly descended from the high-level format that
the first versions of MS-DOS used on floppy disks,
enhanced and extended with the features needed for
the much larger storage devices of modern PCs.

The FAT filesystem views the disk, or the sub-
range of the disk that it covers if operating inside a
partition, as an array of what it officially calls logical
sectors but I prefer to call FAT blocks. A FAT block
is a power-of-two number of bytes that may or may
not match the size of a drive block as used by SCSI.
The Gracious Host firmware is designed to work with

115

FAT blocks larger or smaller than drive blocks, and
either of those cases is possible, but in practice it is
likely that the FAT blocks and drive blocks will both
be equal to 512 bytes, and some other implementa-
tions fail if the sizes do not match. The size of a FAT
block can possibly be chosen during formatting (for
instance, with the -S option to Linux mkfs.fat). The
size of a drive block is normally fixed by the hard-
ware.

The first FAT block of the filesystem (called the
superblock in Unix terminology and in the Gracious
Host code, though DOS and Windows would proba-
bly call it something else) contains metadata about
the filesystem, identifying that this is a FAT filesys-
tem, what version it is, how big it is, and the loca-
tions and sizes of some other structures. There may
be some blocks near the start reserved for various
purposes like boot loader code, and on some FAT
filesystems (for instance, those created for temporary
storage by Windows Update), these reserved blocks
may cover a considerable amount of storage.

The next two significant things in the filesystem
are the root directory and what I’m calling the FAT
per se – that is, the array named the File Allocation
Table (FAT) that also lends its name to the entire
filesystem. FAT filesystems exist in variants called
FAT12, FAT16, and FAT32, referring to the number
of bits per entry in the FAT per se. Some of the
information in the superblock indicates which of these
applies, and some details of the other structures, in
particular the way the root directory is stored, vary
depending on the variant. For FAT12 and FAT16,
the root directory is just an array of directory entries
(dirents) in reserved FAT blocks near the start of the
filesystem, with a starting point and length described
in the superblock. FAT32’s root directory is a little
more complicated and discussed below.

Usually, there is a second copy of the FAT per
se, either as a simple backup or to support clever
journalling schemes that update one completely and
then the other and can recover from an interrupted
update operation. Rarely, there may be three or more
copies. The Gracious Host only looks at the first one.

The remainder of the filesystem, after the special
structures at the start, is divided into clusters, which
are larger blocks formed out of FAT blocks. Clusters
are the smallest units of space allocation and there is
an entry for each cluster in the FAT per se, so there
is a tradeoff between using smaller clusters for better
allocation efficiency, and larger clusters for fewer FAT
entries. Each cluster is some power-of-two number

of FAT blocks, with the number of FAT blocks per
cluster specified in the superblock. They tend to be
larger on larger disks, with a size of 8K per cluster (16
FAT blocks of 512 bytes each, per cluster) being fairly
common. Clusters larger than that are less common
and may be unsupported by some implementations;
16K is usually safe but the exact upper bound is not
very well-defined. The files; subdirectories; and on
FAT32, the root directory; are stored in the clusters.

Files (with directories being special files) are
stored in linked lists of clusters. From somewhere
(where, depends on the type of object) you get the
number of the first cluster. The first cluster’s worth
of data in the file is in that cluster number. Then
you take the cluster number as an index into the en-
tries of the FAT per se. The entry at the specified
location tells you the number of the next cluster, or
a reserved value, effectively a null pointer, indicat-
ing that that was the last cluster. If there is a next
cluster, you get more data from the corresponding
cluster, then go back to the FAT per se to get the
cluster number for the third cluster of the object; and
so on. There are other reserved values, which should
never appear within a file chain, for currently-unused
clusters (available for writing new files or expanding
existing ones) and defective clusters where the system
should not attempt to store data.

Directories are arrays of dirents, each representing
a file or an empty slot where a file could be stored,
with metadata like the file’s name, time stamp, and
size in bytes (necessary for knowing how much of the
last cluster in the chain to actually use). The basic
FAT dirent only has 11 bytes for the filename (stylized
for display as an 8-character ASCII name followed
by a 3-character extension, like FIRMWARE.FRM);
enhancements in later versions of the format involve
storing an abbreviated name in the regular dirent and
then using special dirents that older systems will not
recognize as files, to store chunks of a longer filename.
If the filesystem has subdirectories, then those are
stored like files with some bits set to indicate they
are actually subdirectories, and then the content of
such a file, inside its chain of clusters, will be more
dirents for the files and lower-level subdirectories in
the subdirectory.

The root directory for FAT12 or FAT16 is in a
fixed-length chunk of reserved FAT blocks near the
start of the filesystem. For FAT32, the root directory
is stored in a chain of clusters, as if it were a file or
subdirectory, starting in a cluster number specified in
the superblock. Subdirectories are stored in chains of

116

clusters, starting at clusters specified in their parent
directories. To read the data of a file, in general we
must find the directory containing it, read through
that to find the corresponding dirent for the file, and
then the dirent will contain the starting cluster num-
ber of the file. Reading through the file (or through a
directory that is stored in clusters) requires following
the chain of pointers through the FAT per se.

The driver code makes use of a data structure it
calls a CABA: a Cluster And Block Address. The
CABA points to a FAT block within a cluster. It is
six bytes long.

0
2
4

16 0

block

cluster

The fields are defined as follows.
block index of the block within the cluster; for in-

stance, with four FAT blocks per cluster, this
field is in the range 0–3.

cluster 32-bit number of the cluster within the
filesystem, using the FAT filesystem’s standard
indexing in which the first valid cluster is num-
ber 2.

Some of the driver’s internal subroutines take a
pointer to a CABA as an argument.

Below the level of the CABA, the firmware makes
use of a buffer pool that caches either FAT blocks or
drive blocks. The init_buffer_pool subroutine ini-
tializes or reinitializes this pool, using memory allo-
cated on the stack, as many buffers as will fit while
leaving a small allowance for other uses of the stack
at the end of RAM. Requests for a block through
get_fat_block and get_drive_block check the cache
first and go to the USB device only if the block was
not already cached, with a simple cache replacement
policy.

USB device simulation (overview)
Testing the FAT filesystem code on real hardware
is tricky, especially with respect to unusual barely-
standard flash drive hardware and FAT parameters,
because on top of the usual issues of trying to single-
step the microcontroller without the USB device giv-
ing up, unusual hardware is by nature hard to find.
Generating FAT images with oddball parameters is
a little easier because that can be done in software,
but doing it reproducibly is not easy on every de-
velopment machine, and loading the oddball images

into the barely-standard flash hardware may present
additional difficulties.

So to make debugging easier, the USB mass stor-
age driver has a built-in simulation feature. When
SIMULATE_USB_MASS is defined in config.inc
with an integer from 1 to 6, after boot-up instead of
going into the main loop in firmware.s, the firmware
will jump into the USB mass storage driver; and
whenever it tries to read from the mass storage de-
vice, it will instead read canned data from program
memory. The file simdrive.inc sets up the program
memory data for one of six test cases selected by the
SIMULATE_USB_MASS value as follows.
1 32G USB stick with FAT32 filesystem in a parti-

tion, 512-byte drive and FAT blocks, 16K clus-
ter size, some unusal parameters because it was
formatted by the Windows 10 upgrade process,
target file unfragmented but deep in the par-
tition so that cluster indices will exceed 16-bit
range.

2 80M drive with FAT32, 512-byte drive and FAT
blocks, 512-byte cluster size, target file heavily
fragmented.

3 20M drive with FAT16, 512-byte drive and FAT
blocks, 1K clusters.

4 80M drive with FAT16, 512-byte drive blocks, 2K
FAT blocks, 8K clusters.

5 360K drive with FAT12 (simulating floppy disk),
512-byte drive and FAT blocks, 1K clusters.

6 1440K drive with FAT12, 2K drive blocks, 1K FAT
blocks, 1K clusters.

There is a list of blocks hardcoded into the sim-
drive.inc file for each test case, and the data for each
block of the FAT infrastructure is loaded from files
named like fat32a.bin, fat32b.bin, fat16a.bin, and so
on. These files are provided in the source package
inside simdrive-images.zip. Be aware that that file
is heavily compressed, containing about 182M of im-
age files mostly full of zeroes; unpacking it is only
recommended if you actually intend to use the drive-
simulation feature. The data bytes for the simulated
firmware image file are extracted not from the disk
images but from simdrive.bin, which is a copy of the
current firmware automatically created by the Make-
file as a side effect of doing a regular build.

When the firmware attempts to read a block in
simulation mode, it scans the list of block numbers,
and if the desired block number is found, it then reads
the associated data from program memory. The con-
sequence of this design is that the list in simdrive.inc
of blocks to be stored for a test case needs to contain

117

all the blocks that the firmware will attempt to read
while running the test case. If firmware bugs cause
it to read unexpected blocks, or if the fat*.bin file
contents change in a way that points it to unantic-
ipated block numbers, then the simulated drive will
be unable to return a result for a read call and the
firmware will crash in the debugger. But as supplied,
with the fat*.bin files included with the source, all
six test cases should be able to run as far as starting
the loader.

The loader cannot actually succeed with a sim-
ulated USB flash drive because if running in Mi-
crochip’s simulator, there will be no SRAM to pro-
vide data to the loader; and even if running in real
hardware, the entire firmware image is not actually
stored in the simulated drive (simdrive.inc just folds
over the first 8K bytes to make up the size), and so
a CRC32 checksum will probably fail in the loader.
The simulation is only intended for checking the FAT
code.

The file fat32a.bin was created by hand-selecting a
few blocks from a FAT image full of Windows update
files that I can’t share in full (and it would be 32G
anyway, which is a lot to share). The others were cre-
ated by the included mksimdrives script and in prin-
ciple could be re-created by running that script again.
But be careful: first, this script must run as root and
on a Linux system, because it mounts and unmounts
loopback image files using Linux-specific commands.
Also, although it is fairly consistent on my instal-
lation as long as the firmware image size does not
change, it is quite likely that re-running it after any
development has occurred will produce slightly dif-
ferent images, with file blocks in different locations
within the images, so that the block numbers in sim-
drive.inc may need to be patched up by hand for the
test cases to work after re-running it. The mksim-
drives script is included primarily for reference and
actually running it is not really recommended. At
the very least, as with any root script, you should go
through it, edit it to put in your preferred pathnames,
and make sure you understand how it works, before
running it as root on your system.

The remainder of this chapter describes the source
code of the driver, which talks to the USB flash drive
using the USB Mass Storage and SCSI commands,
reads drive blocks, breaks or joins them into FAT
blocks, and decodes the FAT filesystem format. The
sections of documentation are arranged in the same
sequence as the code, which may not be the easiest
sequence for understanding the layers of abstraction

involved. Refer back to the conceptual material above
as needed for the description of the data structures.

TPL entry and RAM data
Like most Gracious Host per-device drivers, the
source file starts with a TPL entry and some data
structures defined in the common data area. The
TPL entry for this driver is set up to recognize de-
vices exposing an interface descriptor of USB class
8 (“mass storage”), subclass 6 (“SCSI”), protocol 80
(“bulk-only”).

The common data area is laid out as required
by FIND_IN_OUT_ENDPOINTS (reused from qw-
erty.s), with pointers to the first in and out endpoints
at the very start of the common data followed by an
array of EP data structures. In this case there are
just two EPs in the array; we expect the device to
expose exactly one in and one out endpoint. After
that the code reserves separate IRPs for CBW, CSW,
and data transfers, so that we can avoid needing to
reinitialize a shared IRP for these different uses. See
the USB mass storage overview above.

The rest of the common data variables generally
relate to block buffers and decoding the partition ta-
ble and FAT filesystem. They will be described as
they are used.

Driver init
Unlike most per-device drivers, this one has no “main
loop”; it unconditionally does its work and then starts
the loader instead of retaining control indefinitely.
At the entry point usbmass_driver, it starts by call-
ing USB_CONFIGURE_DEVICE to select the con-
figuration and then FIND_IN_OUT_ENDPOINTS
(from qwerty.s) to determine which nedpoint is the
input and which is the output. Both must exist; if
not, the driver terminates with a THROW.

This driver uses the PRNG subsystem (for
CBW/CSW tags), so it calls START_CRC to ini-
tialize that, and makes a PRNG_HASH_TIMERS
call at the start as well to make sure there is at least
a little bit of entropy in the pool.

Many USB flash drives take a long time to “wake
up” after initialization, or exhibit long random pauses
during operation. So at this point we set the
EPF_INFINITE_NAK flag on both bulk endpoints,
to allow the low-level driver to wait through such
pauses as long as necessary. (The default of allow-
ing 20,000 NAKs for bulk transfers is usually, but
not reliably always, enough.)

To make sure the drive is ready, we go into a loop

118

at the label ready_loop that starts with a 100 ms
pause handled by USB_WAIT, then sends a SCSI
TEST UNIT READY command. This is a test with
side effects. Some USB drives need to actually re-
ceive this command before they will execute other
commands; it is not enough to just wait a while for
the drive to be ready and then send commands like
READ. I suspect that such a drive is not really start-
ing its wake-up routine on power-up but only when it
gets the TEST UNIT READY. So the code prepares
a CBW for this command (conveniently, the payload
is all zeroes) with a call to set_up_cbw, then calls
wait_and_hash to send it to the drive. These sub-
routines are defined later in the file.

A call to check_csw gets the result. If the drive
is ready, the call returns normally (in which case we
branch to read_capacity). If the drive is not ready,
or if some other error occurred, then check_csw
THROWs to not_ready. When in drive simulation
mode, check_csw will not THROW, so the simulated
drive will appear to be ready on the first try.

The “not ready” condition is not an error; it just
means we need to wait longer. So the first step
in the exception handler at not_ready is to check
the byte in the CSW that describes what kind of
unsuccessful condition occurred. If it is non-zero,
indicating something other than “not ready,” then
the code THROWs again, which will terminate the
entire driver. Otherwise, it proceeds to execute a
SCSI REQUEST SENSE command, which basically
asks the drive to explain its recent unsuccessful re-
turn. We don’t care about the data returned by
REQUEST SENSE, but some drives insist upon re-
ceiving this command after every “not ready” re-
turn from TEST UNIT READY, else they will seize
up. The code to send this command sets up the re-
quest with set_up_cbw, sends it to the device with
wait_and_hash, then creates an 18-byte temporary
stack frame for the returned data and does a bulk
transfer with transfer_and_check_csw to receive the
device’s response. The stack frame is discarded and
the code branches back to ready_loop for another
attempt.

Once the drive has reported itself ready, the code
starting at read_capacity sends the READ CAPAC-
ITY (10) command, which gets the drive’s block size
and number of blocks. The code calls set_up_cbw
with appropriate parameters to set up the data
structures for this command, then wait_and_hash
to send it to the device. The data block for
this command is eight bytes; the code calls trans-

fer_and_check_csw to complete the command. If
SIMULATE_USB_MASS is defined, then a block of
code at this point fills in simulated values for the
block size and number of blocks.

Next are some checks for acceptable values re-
turned from the drive. Drives greater than 232 blocks
in size (2T if the blocks are 512 bytes) need a differ-
ent command to read their true sizes; they return a
last-block index of 0xFFFFFFFF with READ CA-
PACITY (10). The code checks for that value and
THROWs if it is seen; the Gracious Host does not
work with drives bigger than the 32-bit limit. Next,
it confirms that the block size is less than 64K.

The initialization section ends with a call to
init_buffer_pool, which sets up the cache to use a
block size matching the drive’s. This decision may
be changed later if FAT blocks turn out to differ in
size from drive blocks.

Reading the FAT superblock
The driver will look for a FAT superblock in up to five
places: block 0, and the four blocks pointed to by the
primary partition table entries, which are stored in
block 0. In order to reuse the code that checks for a
superblock, these checks are structured so that “start-
ing in block 0 without a partition table” is treated as
an entry at index −1. The initialization code sets
the partition_table variable, a 32-bit block index for
the start of the partition currently under considera-
tion, to zero and the partition_entry variable, which
is the byte offset into block 0 of the current partition
table entry, to one entry length before the start of
the table. It calls get_drive_block to load block 0,
leaving the block’s data in a buffer pointed to by W4.
Then it continues into try_fat_superblock, which is
the return point for the loop.

At try_fat_superblock it is assumed W4 points
to a buffer containing what we hope will be the first
block of the FAT filesystem. Valid FAT filesystems
start with magic numbers: either 0xEB in the first
byte and 0x90 in the third byte, or else just 0xE9
in the first byte. These are the signatures of 8086
assembly language instructions expected to occur at
the start of the PC boot loader code. The code
checks for these and if neither is found, it branches to
try_next_partition, which is the increment portion
of the loop, described below.

With a valid magic number match, the next step
is to get some metadata from the superblock: the
FAT block size, number of blocks per cluster, count
of reserved FAT blocks at the start of the filesystem

119

before the FAT per se, and number of root directory
entries. The number of root directory entries is used
for recognizing FAT32, because it is zero for FAT32
(root directory in a cluster chain, no fixed limit on
entry count) and nonzero for FAT12 and FAT16.

In the FAT32 case, it branches to
fat32_read_metadata for FAT32-specific han-
dling of the metadat. Otherwise, it gets the total
number of FAT blocks (size of the filesystem), which
may be stored in one of two fields depending on
whether it first in 16 bits or needs an extended 32-bit
field. It also gets the number of FAT blocks in each
FAT per se. There follow some calculations on the
metadata values aimed at computing the value for
clusters_start, which represents the base for indexing
into the filesystem’s cluster area. The smallest valid
cluster number is 2 (values 0 and 1 are reserved),
but clusters_start represents the FAT block number
where an hypothetical cluster number 0 would start.
Then the starting point of a given cluster can be
calculated as clusters_start plus the index times the
number of FAT blocks per cluster. Also calculated
along the way are rootdir_block, representing
the start of the root directory, and cluster_limit,
representing the smallest invalid cluster number.

The cluster_limit value is used to determine
whether this is a FAT12 or a FAT16 filesystem.
According to the rules documented by Microsoft,
cluster_limit>4086 (approximately 2M when using
512-byte blocks) implies FAT16 and anything smaller
is FAT12. Some implementations may misbehave by
using the wrong FAT version for filesystem sizes close
to this boundary, but we do not have a better way of
determining the version, and the question is unlikely
to come up often in practice.

After recording the FAT version in the fat_type
variable, the code calls init_buffer_pool again to
make sure the buffers are big enough to hold entire
FAT blocks, which could be a change from the pre-
vious size if FAT blocks are bigger than drive blocks.
Then it continues into fat1216_rootdir_block_loop,
which loops over the blocks of the root directory and
then over the 32-byte dirents within the blocks. For
each dirent it calls look_at_dirent to see if the dirent
is the file we are looking for.

The loop at fat1216_rootdir_block_loop is un-
conditional and looks infinite at first glance, but in
fact look_at_dirent keeps track of the number of di-
rents it has seen and once it reaches the root directory
length, it will branch to try_next_partition, ending
the loop. This code path leaves a superfluous re-

turn address on the stack, but it can occur at most
four times in an eventually-successful run, limiting
the leak to a negligible 16 bytes (else the driver would
eventually THROW and reset the stack anyway).

For FAT32 filesystems, the metadata-reading
code continues at the label fat32_read_metadata. It
loads several metadata fields from the superblock, in-
cluding the number of FAT blocks in the filesystem,
number of FAT blocks in each FAT per se, and the
cluster number of the start of the root directory’s
chain. It constructs a CABA for the first block of the
root directory.

Next, it computes the clusters_start value, much
as in the FAT12/16 case although the calculation
is more complicated because of the longer inte-
gers involved. As in the FAT12/16 case, it calls
init_buffer_pool again to make sure the buffers
are big enough to contain entire FAT blocks,
bearing in mind that FAT blocks may be big-
ger then drive blocks. Then it continues into
fat32_rootdir_block_loop.

The code at fat32_rootdir_block_loop loops
over the root directory, calling look_at_dirent
for each 32-byte dirent. It differs a bit from
fat1216_rootdir_block_loop because it needs to use
get_caba to retrieve blocks of the root directory, and
increment_caba to find the next block after each
one, instead of just reading consecutive FAT blocks.
It also forces num_dirents to 0xFFFF each time
through the loop to prevent look_at_dirent from
ever detecting the end of the directory (which is of
unlimited length in the FAT32 case). Instead of leav-
ing that to the inner call, this loop uses the return
status of increment_caba (LE status at the end of
the chain) to recognize when it has reached the end
of the root directory, in which case it will fall through
into try_next_partition.

Handling the partition table
The code at try_next_partition retrieves the next
partition table entry. On the first pass through the
loop, after looking for a filesystem starting in block 0,
the index variable will have been set up so that the
“next” partition table entry found by this code is ac-
tually the first one.

The code adds 16 bytes (the size of a partition ta-
ble entry) to the variable partition_entry, and then
compares it against the address at the end of the ta-
ble. A match indicates we have looked in the whole
disk and all four primary partitions without finding
a firmware update image; in that case the driver ter-

120

minates with a THROW.
Otherwise, the code calls get_drive_block for

block 0 to retrieve the partition table, and checks
for the so-called “boot signature” value 0xAA55 (lit-
tle endian) at offset 0x01FE, which refers to the last
two bytes of the block if the block size is the usual
512 bytes. Failing to find that value means this is not
a standard DOS-style partition table, and the driver
terminates with a THROW.

Next come some checks on the specific partition
table entry pointed to by partition_entry. Its type
must be nonzero, and its starting block number must
be nonzero. Failing either check results in a branch
back to try_next_partition; this entry is skipped
but the table may still have a usable entry in one
of the other slots. If the table entry looks valid, then
the code saves the partition’s starting block num-
ber to partition_start, loads that first block with
a call to get_drive_block, and branches back to
try_fat_superblock to evaluate whether this parti-
tion may contain a readable FAT filesystem.

Handling a directory entry
The subroutine starting at look_at_dirent examines
one FAT directory entry and does whatever is appro-
priate for it. In the current firmware, that consists
of simply checking whether the dirent’s filename is
FIRMWARE.FRM, then loading the file contents to
SRAM and invoking the firmware loader. But this
would be a reasonable place to add additional code
for doing other things with other files.

On entry to look_at_dirent, W4 should be point-
ing at a block buffer and dirent_in_block should be
the offset into that block of the dirent to look at. It
starts by scanning the filename, which is in the first 11
bytes of the dirent, and checking whether it matches
the constant string “FIRMWAREFRM” (the dot be-
fore the extension is implicit). If the filename does
not match, it branches to look_at_next_dirent. The
code there starts by incrementing dirent_in_block
32 bytes, then checks the number of remaining di-
rents in the directory (only relevant for FAT12 and
FAT16; the FAT32 calling code defeats this check). If
there are no more dirents in the directory, it branches
to try_next_partition, having completed the scan of
the current filesystem. Otherwise, it checks for the
end of the block and clears dirent_in_block if it has
reached the end of the block, before returning. The
logic before the return is arranged so that the CPU
status left by the end-of-block check is left in place;
the calling code can use bra gtu to detect whether

there are more entries in the current block.
In case of a filename match: the driver has found

its target, a loadable firmware image file. It must
copy the contents of that file to SRAM. So it sends a
RSTIO transaction to the SRAM to make sure it is
not in some unusual mode, then initializes a CABA
pointing at the start of the file using the first-cluster
number from the dirent. It resets the 32-bit (only 17
bits used) variable sram_pointer to zero, and sends a
WRMR command to the SRAM to put it in sequen-
tial mode.

There follows a loop over all the blocks in the file.
The code calls get_caba to load one block, opens an
SPI transaction and starts a WRITE command with
the SRAM, then sends all the bytes of the block to the
SRAM. It closes the transaction, updates pointers,
and calls increment_caba to find the next block in
the file. That subroutine returns GTU status if there
is another block in the file at all, and the loop uses
that status for detecting termination. Once the file
is complete, it removes the stack frame with ulnk
and branches to LOADER_INIT to handle the new
firmware.

Following the FAT chain
The driver needs to follow FAT chains in two places:
reading the root directory of a FAT32 filesystem, and
reading the actual file contents once the update im-
age file has been found. These cases share the incre-
ment_caba and get_caba subroutines, which work on
the CABA (Cluster And Block Address) structures
described earlier. Both subroutines take the addess
of the CABA structure as an argument in W2. They
call the lower-level get_fat_block subroutine to do
the detail work of finding a FAT block within the
current partition, translating it to one or more drive
blocks, and actually getting the drive blocks.

Part of the reason for this level of abstraction
is because clusters are usually bigger than one FAT
block and may often be bigger than all of the micro-
controller’s data memory. It is not enough to just
have a routine for loading a cluster, because a whole
cluster might not fit in memory. A single FAT block
is always expected to fit in a buffer – even if it in turn
corresponds to more than one drive block.

The code to look up clusters in the FAT per se is in
increment_caba. It starts by incrementing the block
number within the cluster. If the result is within the
number of blocks per cluster, then nothing else need
be done, and the subroutine returns, with the GTU
(greater than, unsigned) status from the comparison

121

still in force for detection by the caller. This subrou-
tine returns LEU status (less than or equal, unsigned)
at the end of the file, GTU otherwise.

In the case where the increment passed the end
of the cluster, it will be necessary to do a lookup in
the FAT per se for the next cluster number. The first
step is to calculate the byte offset into the FAT of
the relevant entry. That is the current cluster num-
ber times 3/2, 2, or 4, depending on whether the
filesystem is FAT12, FAT16, or FAT32. The byte off-
set divided by the FAT block size gives the index of
the desired FAT block within the FAT per se; then
adding the fat_start value gives the block number
within the partition, which is the argument for the
get_fat_block call that gets the appropriate block of
the FAT per se.

Within the block, the remainder from the divi-
sion by fat_block_size gives the byte offset of the
entry. The code splits here into cases for even and
odd FAT12 entries; FAT16 entries; and FAT32 en-
tries, but the overall effect in each case is to load the
entry value (clearing some reserved bits for FAT32)
into the cluster number of the CABA. The entry value
represents the index of the next cluster to read. There
are some checks for whether the cluster number is
invalid, which results in a THROW, or is an end-of-
chain marker, in which case the subroutine returns
with LEU status to indicate the end of the file. Oth-
erwise, it returns with GTU status.

The get_caba subroutine is simpler. It just
does some double-precision arithmetic to calculate
the FAT block number corresponding to the CABA
(cluster number times fat_blocks_per_cluster, plus
block within cluster, plus clusters_start) and then
falls through into get_fat_block.

FAT-level block loading
Requests for FAT blocks go through get_fat_block,
which is a simple wrapper for get_drive_block
that handles the possible difference in block sizes.
The buffers are assumed to have been sized for
the larger of the two blocks, and the code checks
fat_blocks_per_buffer, which was set while reading
the FAT superblock, to see which is larger.

For FAT blocks strictly smaller than drive blocks,
it may be necessary to find the desired FAT block
in the middle of a drive block. The code does a
32× 16 → 32 division to find the drive block number
within the partition, and multiplies the remainder by
fat_block_size to get the offset into the drive block.
Then it rejoins the main flow.

For FAT blocks equal to or larger than drive
blocks, the offset is always zero and the code does a
multiplication to find the drive block number within
the partition for the start of the FAT block. In the
common case of FAT blocks and drive blocks the same
size, this is a multiplication by 1.

Either way, the partition_start value is added to
the drive block number (within partition) to get the
drive block number (within drive), and the result is
passed to get_drive_block. A final addition adjusts
the buffer address in W4 to account for the offset
within the drive block. Note that get_drive_block
actually gets an entire buffer, even if that is more than
one drive block, so the case of a FAT block bigger
than a drive block is covered.

Drive-level buffer pool
The init_buffer_pool subroutine sets up the pool of
buffers used for caching drive and FAT blocks. The
buffers go into a new lnk/ulnk stack frame. The new
frame replaces the one set up by the caller, and the
caller must have one in place (and nothing else on the
stack on top of it) before calling this subroutine. The
number of blocks is chosen to fill the stack, leaving at
least STACK_RESERVATION bytes free, while not
exceeding MAX_BLOCK_BUFFERS. The value of
STACK_RESERVATION is set in global.inc at 256;
and the value of MAX_BLOCK_BUFFERS is set in
this file at 24, calculated to represent the largest num-
ber of buffers we could possibly fit in data memory
given the space occupied by fixed-length and fixed-
location structures and a minimum likely block size
of 256 bytes.

Buffers are actually allocated eight bytes longer
than requested (BUFFER_SAFETY_MARGIN
plus rounding) to handle the USB hardware’s DMA
overrun.

The buffer_info variable is an array of six-byte en-
tries that stores information about the buffers. Each
entry starts with a 16-bit pointer to the buffer in
data memory, and then the remaining 32 bits are
the drive block number of the start of the buffer, or
0xFFFFFFFF if the buffer is unoccupied. After the
last valid buffer is an entry with a zero in the ad-
dress pointer, and there are an extra two bytes at
the end of the array to hold this zero sentinel if all
MAX_BLOCK_BUFFERS exist.

So the init_buffer_pool call sets up this struc-
ture. It begins by comparing drive_block_size
against the requested block size in W2, which will
be the FAT block size while processing a FAT

122

filesystem, but another copy of the drive block
size when reading raw drive blocks for the par-
tition table or FAT superblock, before the FAT
block size is known. The code splits into two
cases to find the ratios fat_blocks_per_buffer and
driver_blocks_per_buffer, at least one of which will
be 1. (More complicated ratios like 3:2 are not pos-
sible because FAT and drive blocks are both con-
strained to be powers of two.) The buffer_size vari-
able is set to whichever block size is larger.

Then the code handles re-arranging the stack.
First it pops the caller’s return address into W3, then
it removes the old stack frame with ulnk and creates
a new, empty one with lnk #0. The stack pointer will
be changed later to allocate more bytes. It computes
the available space on the stack, with the necessary
allowances, and divides to find how many buffers it
can allocate. It throws an exception if there is not
room for even one buffer.

Possibly worth mentioning is that the toolchain
provides symbols named __DATA_LENGTH for
the length of RAM in data memory (expected to
be 8K, 0x2000), and __DATA_BASE for the start
of the RAM area after the SFRs (expected to tbe
0x0800), but the assembler cannot use both of these
in the same constant expression, probably because of
limitations on how complicated a “fixup” it can pass
to the linker to resolve. So the code uses a hardcoded
value of 0x0800 instead of __DATA_BASE in this
calculation.

Then it resets next_victim, a variable used in the
replacement policy and discussed below. It allocates
the buffers as calculated on the stack, updating the
stack pointer to be after them. It writes the addresses
of the new buffers into buffer_info, with the unused-
buffer marker value of 0xFFFFFFFF in the block
number for each one, and a zero address after the
last valid buffer. Finally, it returns to the caller with
a goto to the previously-saved return address.

The get_drive_block subroutine is responsible for
obtaining a full buffer that starts with a chosen drive
block number, whether that happens by actually
loading it from the drive or by finding such a buffer
already in the cache. Note that unlike get_caba, this
code requires the requested block to be at the start
of the buffer; it will not look for the requested block
in the middle of a buffer.

It starts by a straightforward scan of the
buffer_info data structure for a buffer whose block
number matches the request. If found, that block
will be the return value; but before actually return-

ing it, the code falls through into find_new_victim
to maintain the cache replacement policy before re-
turning.

Now, about the cache replacement policy. The ba-
sic concept here is that requests for blocks could come
in in any order. If a block is not in the cache, then
(except for a brief time at the start while there exist
never-used buffers) we must evict a block currently
in the cache to make room for the new one. Ideally,
we should evict a block which we will never need
again; failing that, one we will not need soon. We
want to keep frequently-used blocks in the cache and
evict rarely-used ones, so that future requirements to
reload blocks will be minimized. It is not possible
for a cache replacement policy to be optimal on all
possible sequences of block requests because it would
have to know the future; but some carefully-designed
policies can come close to the theoretical limits.

The Gracious Host USB mass storage driver uses
a very simple policy that seems to work well in
practice and is basically a modification of the well-
studied “Clock” algorithm. It keeps a variable called
next_victim which is a pointer to what will nominally
be the next block buffer used by a new block. When
get_drive_block cannot find a block in the cache
and needs to load it from the drive, it will load the
new block into the buffer designated by next_victim,
evicting whatever was there before.

However, whenever get_drive_block returns a
block, it checks whether that block happens to be the
next_victim block (always true after a cache miss,
sometimes true after a cache hit). In such a case,
next_victim is incremented to the next buffer, wrap-
ping around at the end of the array. So accessing a
block that was about to be evicted gives it a reprieve
until the pointer rotates all the way around the array
again. During startup, when the block buffers are
all empty, next_victim will advance to a new empty
block as each one is filled. If there should happen
to be only one buffer, next_victim remains on that
buffer and the buffer gets reloaded frequently.

On a cache miss, when the code was unable to find
the block already buffered, it saves the next_victim
pointer to W4 and then calls find_new_victim to in-
crement it. The find_new_victim subroutine has the
side effect of replacing W4 (pointer to buffer_info en-
try) with [W4] (pointer to the actual block buffer).
The cache miss code saves that buffer into the buffer
field of data_irp, to be the destination of the upcom-
ing read from the drive.

Then it prepares a CBW for the SCSI READ (10)

123

command, to cover a range of blocks starting at the
requested drive block number and covering the size
of a buffer (one or more drive blocks). This setup
includes a call to shared code in set_up_cbw to pre-
pare fields, in particular the tag field, common to
all CBWs. Then it calls wait_and_hash to send the
CBW to the device, and transfer_and_check_csw
to do the data transfer and process the terminating
CSW. It recovers the buffer address from the IRP and
returns it.

In the case of device simulation: the calls to read
the data are executed but have no hardware effect be-
cause the instructions that would touch the hardware
are removed by conditional assembly. Then just as
get_drive_block is about to return in the cache miss
case, there is an added call to simulate_block_read,
which will copy data from the simulated drive into
the buffer.

USB communication
Subroutines in this section of the source file
abstract much of the CBW/CSW handling
needed throughout the USB mass storage pro-
tocol. First, wait_and_hash is just two in-
structions that call USB_WAIT_ON_IRP to
do a low-level USB transaction, then tail-call
PRNG_HASH_TIMERS. Higher-level code in the
mass storage driver usually uses this instead of
just calling USB_WAIT_ON_IRP, so that the
PRNG will continue being re-seeded with tim-
ing information from the USB transactions. The
USB_WAIT_ON_IRP call here is conditional on
SIMULATE_USB_MASS not being defined, so the
USB communication will be skipped in simulation
mode.

The set_up_cbw subroutine does most of the
setup for the CBW phase of a mass storage command.
It writes the magic number into the cbw_buffer vari-
able, gets a 32-bit random tag from the PRNG and
stores that both in the buffer and the xaction_tag
variable for future checking, zeros most fields and
puts the necessary values in a few that need to be
non-zero, and sets up W1 and W2 for an upcoming
call to wait_and_hash.

The transfer_and_check_csw subroutine handles
the rest of the mass storage command (data and CSW
phases); it is separated from set_up_cbw to allow
different callers to do command-specific buffer setup
before the data and CSW phases. The code starts
with a call to wait_and_hash for the data phase.
Then it sets up csw_irp and the associated buffer for

the 13-byte CSW transfer and calls wait_and_hash
again to do that transfer.

There follow a bunch of checks on the data re-
turned in the CSW. All the checking code is condi-
tional on SIMULATE_USB_MASS being undefined;
in simulation mode, the subroutine just returns. But
when not in simulation mode, it checks that the CSW
magic number is correct; that the random transaction
tag matches the one stored in xaction_tag; that the
length of the data transfer was as requested; and that
the result code was successful. If any of these checks
fail, it will THROW instead of returning.

USB device simulation (support code)
The simulate_block_read subroutine, which is as-
sembled at all only in simulation mode, runs at the
end of get_drive_block to fill in the buffer contents
that were not written by the skipped code to read
from the drive.

This code starts by extracting the block in-
dex that the caller was asking for, from the CBW
buffer. Then it scans the table in program memory
at _block_tbl for an entry matching the requested
block. If no match, it crashes into an infinite loop,
which provides a convenient place for the debugger
to break if running in a debugger, and will eventually
lead to a WDT timeout if running on real hardware.
In case of a match, it copies the data from program
memory to the buffer and then returns.

124

Glossary
absolute section to the disappointment of tsundere

fans, this is a reserved section in object code
files used for storing symbols whose values are
just unrelocatable numbers and not offsets into
memory sections that the linker should relocate.
The .struct assembler directive is documented
(sketchily) as being for defining symbols in the
absolute section that can then be used as offsets
into data structures; but it either was broken
by Microchip when they did their chop job on
the GNU assembler, or it may have never even
worked in the original GNU assembler to begin
with.

ADC Analog to Digital Converter, a device that
converts voltage measurements to digital num-
bers. The Gracious Host uses a 10-bit ADC
that is built into the microcontroller.

API Application Programming Interface, the inter-
face through which application software can
make use of a library or driver.

BCD Binary Coded Decimal: decimal translated to
binary by translating each digit to four bits in-
dependently, rather than using the integer value
of the entire number at once. Basically the
same thing you would get by pretending the
decimal number is actually hexadecimal.

big endian handling the most significant bytes of
a multi-byte number first, or storing them in
smaller-indexed addresses. Some computers,
and almost all Internet-associated protocols,
prefer big endian, hence the alternate name net-
work byte order. See also little endian. The
USB Mass Storage specification, in its most
popular variation, requires both big endian and
little endian numbers in different parts of the
same data structures.

bit bang serial communication by means of software
on the CPU controlling the timing of individ-
ual bits on one or more GPIO pins, instead of
using a specialized peripheral that implements
the serial protocol in hardware.

boot keyboard the USB Human Interface Device
Specification’s name for the ordinary kind of

typing or QWERTY keyboard typically used
with PCs, and the protocol for talking to it;
called boot because of their idea that this pro-
tocol would only be used during the boot se-
quence and then would be replaced by some-
thing more complicated once the full operating
system finished loading.

boot mouse much like boot keyboard, the basic low-
feature and low-complexity USB mouse proto-
col.

CABA Cluster And Block Address, a data struc-
ture specific to the Gracious Host FAT filesys-
tem driver, used for referring to blocks within
chains.

CBD Technically this is the abbreviation for
cannabidiol, a drug found in cannabis and pur-
ported to have health benefits while produc-
ing little or none of the “high” produced by
tetrahydrocannabinol (THC); but in the con-
text of USB Mass Storage, more likely a typo
for CDB.

CBW Command Block Wrapper. A 31-byte struc-
ture sent from host to device to initiate a USB
Mass Storage bulk-only SCSI command. Con-
tains an unaligned 16-byte field for the SCSI
CDB.

CDB Command Data Block. The header of a SCSI
command, likely to be followed by a data trans-
fer in one direction or the other. Tends to
contain big-endian fields with 16-bit alignment.
SCSI commands are often named with the
length of the CDB, with more than one length
and CDB layout possible for what would oth-
erwise be the same command, such as READ
(10) or READ (12).

CSW Command Status Wrapper. A 13-byte struc-
ture sent from device to host after completion of
a USB Mass Storage bulk-only SCSI command
to report success or failure of the command and
maintain synchronization.

cluster in a FAT filesystem, the unit of allocation.
A cluster may be from 1 to 64 FAT blocks; stan-
dard FAT filesystems have the limitations that

125

the cluster size must be a power of 2 and no
more than 64K bytes total (no more than 16K
in many implementations), but the Gracious
Host can actually read some filesystems that
break those rules.

common data a toolchain feature by which copies
of a symbol can be defined in more than one
assembly-language file and will then be merged
to all appear at the same address; not perfectly
supported by the PIC24 toolchain, but we use
it to implement a substitute for the even more
broken data overlay feature.

CN Change Notification, a microcontroller feature
that allows a GPIO pin to serve as an interrupt
request.

CPU Central Processing Unit.
CRC Cyclic Redundancy Check, a kind of check-

sum based on finite field polynomial division;
our microcontroller has a dedicated hardware
module for computing these efficiently.

CRC32 One of: the PIC24F peripheral for calculat-
ing CRCs; a specific very popular 32-bit CRC
algorithm used by the Gracious Host for check-
ing the integrity of firmware update images and
in the PRNG code; or just any 32-bit CRC.

CRC5 a specific 5-bit CRC algorithm used in USB
for low-level bit error detection and affected by
a silicon erratum in the PIC24F USB hardware.

CTMU Charge Time Measurement Unit, a micro-
controller feature for implementing capacitive
touch controls, not usable in the Gracious Host
hardware.

CV Control Voltage, as in a Eurorack synthesizer
patch.

DAC Digital to Analog Converter; the Gracious
Host contains a separate 12-bit two-output
DAC chip connected to the microcontroller by
the SPI port.

data overlay a toolchain feature by which multiple
software modules that will not run at the same
time can reuse the same addresses for their
RAM data, saving overall memory consump-
tion; desired by the Gracious Host firmware but
unusable in the PIC24F toolchain because of
linker bugs.

descriptor in USB, a data structure that the de-
vice returns to the host during a configuration
phase after enumeration. Devices usually have
many descriptors, containing information about
the device’s manufacturer and model number,
which USB standards it supports, its capabili-

ties and limitations (such as number of buttons
or ports), and so on.

dirent Directory Entry. A 32-byte record in a FAT
filesystem’s directory (root directory or subdi-
rectory). A basic dirent stores the 8.3-format
short filename, file size, starting cluster num-
ber, timestamp, and so on. Files with longer
names have extra dirents each storing a chunk
of the long name.

drive block my name for a block of data in the na-
tive size of a USB Mass Storage device as re-
ported by the SCSI READ CAPACITY (10)
transaction, used to organize subsequent data
transfers. In practice this is expected to always
be 512 bytes, but the Gracious Host can also
handle a few larger sizes.

DMA Direct Memory Access, the act of a periph-
eral reading or writing general RAM directly
instead of going through the CPU and special
registers or memory mapping, often mediated
by a DMA controller. The PIC24F USB mod-
ule uses DMA with a built-in dedicated con-
troller.

DS Data Sheet, specifically the PIC24FJ64GB004
Family Data Sheet published by Microchip.

ECPLL External Clock Phase Locked Loop, the op-
erating mode for the microcontroller clock used
in the Gracious Host. An external crystal os-
cillator module supplies a digital reference at
an accurate frequency that gets multiplied and
then divided to generate the different clock fre-
quencies needed internally by the microcon-
troller.

enumeration something that is supposed to happen
when a USB device is attached to a USB host:
the host assigns the device an ID number, so
that different devices on the same bus can be
addressed separately. The Gracious Host tells
every device to be number 1, because there can
only be one device attached at a time anyway.

EP “endpoint”; a data structure used by the USB
driver to represent the local end of a “pipe”
between software on the host and a “function”
on the device.

Fast RC one of the built-in oscillators on the mi-
crocontroller, capable of running the chip at
full speed without needing any external com-
ponents, but not accurate enough for USB op-
eration unless possibly it may be trimmed for
the variations of individual chips by a fiddly and
poorly-documented procedure.

126

FAT File Allocation Table; see FAT filesystem and
FAT per se.

FAT filesystem a data structure for storing files
and directories on a disk or a disk-like medium,
made popular by MS-DOS, subsequently used
by Windows, and popular for USB Mass Stor-
age devices even when they are read and written
by non-Microsoft systems. The Gracious Host
includes a low-featured FAT filesystem driver
for reading firmware update images from USB
flash drives. FAT filesystems are described as
FAT12, FAT16, or FAT32 depending on the bit
width of the entries in the FAT per se.

FAT per se the part of a FAT filesystem that is lit-
erally named the “file allocation table.” It is
an array of entries that are 12, 16, or 32 bits
long, recording for each cluster in the filesys-
tem whether that cluster is in use, bad, or free,
and if in use, which other cluster is next in the
chain.

FAT block my name for one of the blocks used to
organize a FAT filesystem, officially (but con-
fusingly) called a logical sector and not neces-
sarily matching the drive block size.

FIFO First In First Out, describing a type of buffer
commonly used between the CPU and a periph-
eral, in either direction, so that they will less
often need to wait for each other.

firmware software that is built into hardware, effec-
tively becoming part of it.

foreground the code running on the microcontroller
under ordinary circumstances, when it is not
processing an interrupt.

FRM Family Reference Manual, specifically the
PIC24F Family Reference Manual published (a
chapter at a time, not as a single document) by
Microchip.

GPIO General Purpose Input/Output, the common
digital interface pins on many microcontrollers.
GPIO pins can usually be configured one at a
time as input or output, and often have some
extra features like being configurable for open-
drain or tri-state output modes, or to generate
interrupts in input mode.

GPL the General Public License, a set of copyright
licensing terms applicable to the Gracious Host
hardware and firmware, as well as to the GNU
toolchain. It means you’re allowed to distribute
and make modifications to the things in ques-
tion, but you’re not allowed to prevent others
from doing the same.

hardware breakpoint in ICD, breakpoints me-
diated by undocumented hardware features.
They are efficient and do not wear out the
flash, but you can only have up to four code
and four data hardware breakpoints at a time,
and if you use more than three, you lose some
single-stepping capability and the Microchip
tools will encourage you to switch to software
breakpoints.

Harvard architecture, modified a computer ar-
chitecture that puts code and data in separate
address spaces which may have significantly dif-
ferent rules, common in microcontrollers too
small to run operating systems; used in PIC24.

HID Human Interface Device, the USB term for
a general category of devices used by humans
to directly communicate with computers. In-
cludes mice, typing keyboards, and some things
like joysticks, arcade buttons, and VR con-
trollers, but notably does not usually include
music keyboards (which tend to be USB-MIDI
instead) nor sex toys (which tend to have pro-
prietary vendor-only protocols). The USB HID
standard includes simplified protocols for typ-
ing keyboards and mice, which are called the
“boot” protocols, and a much more complicated
generic protocol intended to work with all types
of HIDs including all of their unique features.

ICD In-Circuit Debugging, with a special hardware
device plugged into reserved pins on the micro-
controller to allow stepping through the code,
setting breakpoints, and so on.

ICSP In-Circuit Serial Programming, loading the
microcontroller with its firmware through ba-
sically the same interface as ICD.

I2C Inter-Integrated Circuit (bus), a serial bus sim-
ilar in nature and typical application to SPI,
and supported by the microcontroller, but not
actually used in the Gracious Host.

IRP I/O Request Packet, the USB standards’ term
for a data structure passed into the driver when
requesting data to be transferred over the bus
in either direction.

ISR Interrupt Service Routine, the subroutine that
handles an interrupt. In PIC24 these need to re-
turn with the special retfie instruction instead
of an ordinary return.

keep-alive a pulse sent from the host to the device
at 1 ms intervals on a low-speed USB connec-
tion. The device disconnects if it misses three
consecutive keep-alives.

127

LDO Low Drop Out, describing a voltage regulator
that can operate with significantly less than the
minimum 3V difference between input and out-
put that is required by traditional 78xx-style
regulators.

level-triggered Microchip’s description of the USB
attach and detach interrupts, which will keep
reoccurring until fully disabled as long as the
relevant state persists, even if the individual in-
terrupts are acknowledged in the way required
by other PIC24F interrupts.

linker script A file that gives the linker instructions
on how to process fragments of code and data
into the memory image of the complete pro-
gram. The Gracious Host uses a customized
linker script to put knowledge about drivers
into the higher-level code that uses it; but even
the default PIC24 linker script does a lot of
complicated processing to support features like
automatic creation of interrupt vector tables,
and initialization of high-level language vari-
ables.

little endian handling the least significant bytes of
a multi-byte number first, or storing them in
smaller-indexed addresses. PIC24 microcon-
trollers have a preference for little endian or-
ganization. See also big endian.

LSB Least Significant Bit; the bit with least numer-
ical value, normally written on the right.

microcontroller in this manual, specifically the
Microchip PIC24FJ64GB002-I/SP microcon-
troller.

Microchip Corporation vendors of PIC24 chips,
some other chips used in the Gracious Host,
and hardware and software development tools.
Distributors of a version of the GNU multi-
platform toolchain modified to work with
PIC24, which means they have certain obliga-
tions under the GPL. See also Sirius Cybernet-
ics Corporation.

MIDI Musical Instruments Digital Interface.
MSB Most Significant Bit; the one with greatest nu-

merical value, normally written on the left.
mutatis mutandis Medieval Latin for “with the

necessary changes.”
OTG USB On The Go, a specification explaining

how a USB host or device can be confused
about which one of those it is.

page in the context of the PIC24F flash program
memory, an aligned block of 512 words or 1536
bytes; this is the unit of flash erase operations.

PIC24 Microchip Corporation’s 16/24-bit micro-
controller architecture.

PIC24F a specific family of microcontrollers, subset
of the broader PIC24 architecture.

PID Packet Identifier. A four-bit code attached to
USB packets which specifies their role in the
protocol.

PMP Parallel Master Port, a feature of some larger
PIC24F microcontrollers that theoretically ex-
ists in the silicon of ours too, but cannot actu-
ally be used because of packaging limitations,
let alone the conflicting Gracious Host board
design.

polyfuse a component in the Gracious Host
hardware, technically a special temperature-
sensitive resistor, that functions like a fuse to
temporarily shut off power to the connected
USB device if the device tries to draw a dan-
gerously large amount of power.

PPQN Pulse Per Quarter Note. Describes the ra-
tio between synthesizer tempo clock signals and
musical notes. MIDI uses a 24 PPQN clock,
meaning that there are 24 clock pulses for each
quarter note. At a tempo of 120 BPM, the
24 PPQN clock has 120× 24 = 2880 pulses per
minute, or 48 pulses per second.

PPS Peripheral Pin Select, a microcontroller feature
allowing the mapping between on-chip digital
peripherals and pins of the 28-pin SPDIP pack-
age to be changed under software control.

PRNG Pseudo-Random Number Generator. In the
Gracious Host this is a firmware feature imple-
mented in utils.s and used by the MIDI back-
end for random arpeggiation and by the USB
mass storage driver to generate transaction-
recognition tokens. It makes use of the CRC32
module.

PSV Program Space Visibility, a feature of the
PIC24 architecture by which part of program
memory can be made to appear in a read-only
window of the data memory space.

row in the context of the PIC24F flash program
memory, an aligned block of 64 instruction
words, equal to 192 bytes; there are 8 rows
to each page, and some flash write operations
write a whole row at a time. Each set of Gra-
cious Host calibration data uses, though it does
not entirely fill, one row.

SCSI Small Computer System Interface, originally
a parallel bus used for connecting disk drives
and other peripherals to computers; basically

128

obsolete in its original form, but some more re-
cent standards, including the common variant
of USB Mass Storage supported by the Gra-
cious Host, work by sending SCSI commands
on top of some other protocol. SCSI is big en-
dian.

SFR Special Function Register(s); the hardware reg-
isters used for communication with the micro-
controller’s on-chip peripherals and for CPU
control, mapped between addresses 0x0000 and
0x07FF in data memory.

skinny DIP a Dual Inline Package (DIP) for a
through-hole IC with 0.300′′ row spacing de-
spite having 24 pins or more. Traditional DIPs
use 0.300′′ spacing only for packages with fewer
than 24 pins and 0.600′′ at higher pin counts.
The microcontroller in the Gracious Host comes
in a 28-pin skinny DIP.

soft timer a timer implemented by having the CPU
periodically update a variable in RAM, instead
of by using a hardware counter that runs inde-
pendently of the CPU.

software breakpoint in ICD, breakpoints imple-
mented by rewriting the program memory in-
stead of using the hardware debugging fea-
tures. You can use an unlimited number of soft-
ware breakpoints, but they are slower, and they
cause significant wear on the flash memory.

SOF Start Of Frame, a packet the host sends to the
device at 1 ms intervals on a full-speed USB
connection, much like the low-speed keep-alive.
The PIC24F hardware can be set to generate
an interrupt linked to the SOF.

SPDIP Skinny Plastic Dual Inline Package; see
skinny DIP.

SPI Serial Peripheral Interface, a serial bus used in
the Gracious Host to control the SRAM and
DAC chips.

SRAM either Serial Random Access Memory or
Static Random Access Memory, which are not
the same thing but the 23LC1024 SRAM chip
in the Gracious Host happens to be both. This
chip provides 128K bytes of memory accessible
to the microcontroller via SPI transactions, and
is used as a buffer for the incoming firmware
image when updating firmware from USB mass
storage.

star section a section (in the assembly-language
sense) with its name declared as just an aster-
isk. Then the assembler will automatically give
it a unique name, separating it from other sec-

tions and allowing the linker some flexibility in
locating it.

tail call When a subroutine ends by branching to
another subroutine. The return from the sec-
ond subroutine has the effect of returning to
the caller of the first. If the last instruction
of the first subroutine before returning would
have been a regular call to the second subrou-
tine, then doing a tail call instead saves some
time and space.

TDL Targeted Device List, the Gracious Host-
specific term for the part of the TPL executable
data structure that recognizes entire devices
based on the information in their device de-
scriptors.

TIL Targeted Interface List, the Gracious Host-
specific term for the part of the TPL exe-
cutable data structure that recognizes interface
descriptors within a device, if no TDL entry has
claimed the device first.

TLA usually read as Three-Letter Acronym, though
many including TLA itself are more properly
called Three-Letter Abbreviations because they
are not pronounced as words.

toolchain the sequence of software tools that turn
source code into a loadable binary image. For
PIC24 assembly language programs like the
Gracious Host firmware, the toolchain as such
is basically just the assembler and linker, al-
though side utilities for dealing with object and
archive files are often counted as part of the
broader toolchain entity.

TPL Targeted Peripherals List, the list of USB de-
vices with which a USB host is intended to work
– both a listing in the documentation and a data
structure likely to exist in its driver software.

trap basically an interrupt that happens when some-
thing really bad has occurred, like an unaligned
memory access. They cannot be ignored or
masked, and normally lead to a CPU reset.

UART Universal Asynchronous Receiver Transmit-
ter, a serial interface traditionally used for con-
necting to things like modems and terminals.

UBM the MSK 014 Gracious Host User/Build Man-
ual, companion to this volume.

USB Universal Serial Bus.
VCO Voltage Controlled Oscillator. One of the ba-

sic modules in an analog synthesizer. Eurorack
VCOs in particular usually have their frequen-
cies controlled by a voltage that shifts the fre-
quency one volt per octave (V/oct); VCOs in

129

non-Eurorack systems may have different con-
trol voltage standards. One of the main appli-
cations for the Gracious Host is in controlling
a VCO, and a V/oct VCO is required for the
calibration process.

von Neumann architecture a computer architec-
ture in which code and data are in the same ad-
dress space, accessed in substantially the same
way, typical of general-purpose computers and
usually taken for granted by operating systems
and programming language tools.

WDT Watch Dog Timer, which resets the CPU if
the firmware does not clear the timer occasion-
ally; intended to break out of situations where
the firmware has gone into an uncontrolled infi-
nite loop. There is also a deep-sleep WDT, not
used on the Gracious Host, which has a similar
function in longer-lasting power-saving modes.

ZIF socket Zero Insertion Force socket, a type of
IC socket designed to withstand many cycles of
inserting and removing ICs without damage to
either party, such as in IC testing equipment or
for the CPU chip on a desktop computer moth-
erboard.

130

	Title Page
	Copyright
	Contents
	Introduction
	This manual's organization
	A note on standards
	Use and contact information

	On-chip peripherals
	Device overview (DS 1)
	Microchip's guidelines for getting started (DS 2)
	CPU (DS 3, FRM 2)
	Memory organization (DS 4)
	Flash program memory (DS 5, FRM 4)
	Resets (DS 6, FRM 7)
	Interrupt controller (DS 7, FRM 8)
	Oscillator configuration (DS 8, FRM 6)
	Power-saving modes (DS 9, FRM 39)
	GPIO and Peripheral Pin Select (PPS) (DS 10, FRM 12)
	General-purpose timers (DS 11, 12; FRM 14)
	Input capture (DS 13, FRM 34)
	Output compare (DS 14, FRM 35)
	Serial Peripheral Interface (SPI) (DS 15, FRM 23)
	Inter-Integrated Circuit (I2C) (DS 16, FRM 24)
	Universal Asynchronous Receiver Transmitter (UART) (DS 17, FRM 21)
	Universal Serial Bus (USB) (DS 18, FRM 27)
	Parallel Master Port (PMP) (DS 19, FRM 13)
	Real-Time Clock and Calendar (RTCC) (DS 20, FRM 29)
	Cyclic Redundancy Check generator (CRC32) (DS 21, FRM 41)
	Analog to digital converters (ADC) (DS 22, FRM 17)
	Analog comparators (DS 23, FRM 46)
	Comparator voltage reference (DS 24, FRM 20)
	Charge Time Measurement Unit (CTMU) (DS 25, FRM 11)
	``Special features,'' notably in-circuit programming (DS 26; FRM 9, 29, 32, 33)
	``Development support'' (DS 27)
	Instruction set (DS 28)
	Electrical characteristics (DS 29)
	Packaging information (DS 30)

	Off-chip hardware
	CV inputs
	Analog outputs
	Gate/trigger outputs
	LEDs
	SRAM
	ICD/ICSP header
	Voltage regulator/bus access

	Build environment and tools
	XC16 Assembler
	Building the firmware
	MPLAB X IDE
	The configuration include file
	Special-purpose include files
	The listing file

	Programming tips, conventions, and tools
	Case and spelling
	Labels and indentation
	Calling conventions
	Conserving space
	Use space-saving instructions
	Sharing a tail
	Convenience labels
	Tail call and FALL THROUGH
	Star section subroutines

	Common data
	Exception handling
	Linker-supported tables

	LED blinker (ledblink.s)
	API
	How it works

	Miscellaneous utilities (utils.s)
	Exceptions
	Linked lists
	Pseudo-random number generator

	Calibration (calibration.s)
	The calibration page
	API for the calibration data
	Cooperative dual threading
	Output calibration
	Input calibration
	Support routines
	Comparator ISR
	Hardware simulation

	Loader and image builder (loader.s, image.s)
	Firmware update process
	Double assembly
	Format of the image file
	SRAM simulation and common macros
	Loader initialization and main loop
	B-record: burn a page
	C-record: do a CRC check
	I-record: check hardware ID
	J-record: jump to address
	S-record: succeed
	F-record: fail
	Support routines
	Image generation overview
	The image generator source file (image.s)

	Firmware framework (firmware.s)
	Microcontroller configuration
	Last page
	Power-on reset
	Non-USB behaviour
	Basic I/O
	A/D conversion and USB short detect
	Global include file

	Low-level USB driver (usb.s)
	Data structures
	Buffer Descriptor Table (BDT)
	Endpoint (EP)
	I/O Request Packet (IRP)

	Initialization and finalization
	Session handler
	Sequence of events
	Interface to TPL entries
	Calling convention for per-device drivers

	Foreground transaction processing
	TPL support routines
	Device driver support routines
	General USB APIs
	The token store
	Packet send and poke
	Multiplex ISR
	Attach
	Detach
	Start Of Frame
	On The Go 1ms
	Error
	Shared transfer-complete code

	Maintenance codes

	MIDI backend driver (midi.s)
	Driver initialization
	Background processing
	The MIDI message and byte streams
	Message and byte stream parsing
	Channel 1: mono CV/gate with velocity and square wave
	Channel 2: duophonic CV/gate
	Channels 3 and 4: quantize to MIDI
	Channel 5: arpeggiate up and down
	Channel 6: arpeggiate in order
	Channel 7: arpeggiate randomly
	Channels 8 and 9: mono CV/gate on one side
	Channel 10: drum triggers
	Channel 11: drum gates
	Channel 12: mono with clock out
	PPS mapping
	Tempo timing
	Interrupt service routines

	Test routines (tests.s)
	Calibration routine, code 5833
	CRC32 test, code 2540
	LED blinker test, code 3183
	MIDI stream test, code 1001
	PRNG test, code 5879
	SPI test, code 9485
	USB eye pattern test

	USB boot mouse driver (mouse.s)
	TPL entry
	Data structures
	Driver init and mouse input
	Mouse report decoding
	Mode 0 (smart quantize)
	Mode 1 (quantize to C major)
	Modes 2 and 3 (semitone and unquantized)
	Result output

	USB boot keyboard driver (qwerty.s)
	TPL entry and key tables
	Maintenance codes
	RAM data
	Driver initialization and main loop
	Most modifier keys
	Regular typing keys
	Left and right shift
	Keyboard LED update
	Press and release: note keys
	Press and release: sustain (Caps Lock)
	Press and release: channel keys (F1–12 etc.)
	Press and release: isomorphic mode (Num Lock)
	Press and release: velocity (keypad numerals)
	Press and release: tap tempo (keypad Insert)

	USB-MIDI interface driver (usbmidi.s)
	Data structures
	Driver initialization and bulk transfer
	Packet decoding and garbage checking

	USB mass storage and filesystem (usbmass.s)
	USB mass storage overview
	Partition and FAT structure
	USB device simulation (overview)
	TPL entry and RAM data
	Driver init
	Reading the FAT superblock
	Handling the partition table
	Handling a directory entry
	Following the FAT chain
	FAT-level block loading
	Drive-level buffer pool
	USB communication
	USB device simulation (support code)

	Glossary

